【題目】對(duì)于函數(shù)和,若存在區(qū)間,使在區(qū)間上恒成立,則稱(chēng)區(qū)間是函數(shù)和的“公共鄰域”.設(shè)函數(shù)的反函數(shù)為,函數(shù)的圖像與函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱(chēng).
(1)求函數(shù)和的解析式;
(2)若,求函數(shù)的定義域;
(3)是否存在實(shí)數(shù),使得區(qū)間是和的“公共鄰域”,若存在,求出的取值范圍;若不存在,說(shuō)明理由.
【答案】(1),;(2);(3)存在,
【解析】
(1)將作為方程利用指數(shù)式和對(duì)數(shù)式的互化解出,然后確定原函數(shù)的值域即為反函數(shù)的定義域,再由對(duì)稱(chēng)可得將換為,換為,即可得到所求的解析式;
(2)由對(duì)數(shù)的真數(shù)大于0,解不等式求交集,即可得到所求定義域;
(3)設(shè),然后求出在閉區(qū)間,上的最小值與最大值,使最大值小于等于1,最小值大于等于,建立不等式組進(jìn)行求解即可.
解:(1)設(shè),則,
兩邊取對(duì)數(shù)得:,
所以;
由函數(shù)的圖象與函數(shù)的圖象 關(guān)于點(diǎn)對(duì)稱(chēng),
可得,即為;
(2),函數(shù),
由,且,
可得,
則函數(shù)的定義域?yàn)?/span>;
(3)假設(shè)存在實(shí)數(shù),使得區(qū)間,是和的“公共鄰域”,
因?yàn)?/span>,時(shí),函數(shù)有意義,
所以,所以,
由區(qū)間,是和的“公共鄰域”,
可得,
設(shè),
二次函數(shù)的對(duì)稱(chēng)軸為,
所以在,上為增函數(shù),
當(dāng)時(shí),取得最小值,當(dāng)時(shí)取得最大值,
從而可得在閉區(qū)間,上的最小值與最大值分別為:
,,
當(dāng),時(shí),恒有成立的充要條件為:
,即為,
解得.
則存在實(shí)數(shù),且,
即時(shí)使得區(qū)間,是和的“公共鄰域”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的一系列對(duì)應(yīng)值如下表:
(1)根據(jù)表格提供的數(shù)據(jù)求出函數(shù)的一個(gè)解析式;
(2)根據(jù)(1)的結(jié)果,若函數(shù)的周期為,當(dāng)時(shí),方程恰有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某群體的人均通勤時(shí)間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時(shí),某地上班族中的成員僅以自駕或公交方式通勤,分析顯示:當(dāng)中的成員自駕時(shí),自駕群體的人均通勤時(shí)間為(單位:分鐘),而公交群體的人均通勤時(shí)間不受影響,恒為40分鐘,試根據(jù)上述分析結(jié)果回答下列問(wèn)題:
(1)當(dāng)在什么范圍內(nèi)時(shí),公交群體的人均通勤時(shí)間少于自駕群體的人均通勤時(shí)間?
(2)求該地上班族的人均通勤時(shí)間的表達(dá)式;并求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的邊AB所在直線方程為y=3x,BC所在直線方程為y=ax+12,AC邊上的高BD所在直線方程為y=﹣x+8.
(1)求實(shí)數(shù)a的值;
(2)若AC邊上的高BD,求邊AC所在的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“活水圍網(wǎng)”養(yǎng)魚(yú)技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點(diǎn).研究表明:“活水圍網(wǎng)”養(yǎng)魚(yú)時(shí),某種魚(yú)在一定的條件下,每尾魚(yú)的平均生長(zhǎng)速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當(dāng)時(shí),的值為2千克/年;當(dāng)時(shí),是的一次函數(shù);當(dāng)時(shí),因缺氧等原因,的值為0千克/年.
(1)當(dāng)時(shí),求關(guān)于的函數(shù)表達(dá)式.
(2)當(dāng)養(yǎng)殖密度為多少時(shí),魚(yú)的年生長(zhǎng)量(單位:千克/立方米)可以達(dá)到最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《數(shù)書(shū)九章》中有“天池盆測(cè)雨”題,大概意思如下:在下雨時(shí),用一個(gè)圓臺(tái)形的天池盆接雨水,天池盆盆口直徑為2尺8寸,盆底直徑為l尺2寸,盆深1尺8寸.若盆中積水深9寸,則平均降雨量是(注:①平均降雨量等于盆中積水體積除以盆口面積;②1尺等于10寸)( )
A. 3寸B. 4寸C. 5寸D. 6寸
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種計(jì)算機(jī)病毒是通過(guò)電子郵件進(jìn)行傳播的,下表是某公司前5天監(jiān)測(cè)到的數(shù)據(jù):
第天 | 1 | 2 | 3 | 4 | 5 |
被感染的計(jì)算機(jī)數(shù)量(臺(tái)) | 10 | 20 | 39 | 81 | 160 |
則下列函數(shù)模型中,能較好地反映計(jì)算機(jī)在第天被感染的數(shù)量與之間的關(guān)系的是
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)對(duì)高二甲、乙兩個(gè)同類(lèi)班級(jí)進(jìn)行“加強(qiáng)‘語(yǔ)文閱讀理解’訓(xùn)練對(duì)提高‘?dāng)?shù)學(xué)應(yīng)用題’得分率有幫助”的試驗(yàn),其中甲班為試驗(yàn)班(加強(qiáng)語(yǔ)文閱讀理解訓(xùn)練),乙班為對(duì)比班(常規(guī)教學(xué),無(wú)額外訓(xùn)練),在試驗(yàn)前的測(cè)試中,甲、乙兩班學(xué)生在數(shù)學(xué)應(yīng)用題上的得分率基本一致,試驗(yàn)結(jié)束后,統(tǒng)計(jì)幾次數(shù)學(xué)應(yīng)用題測(cè)試的平均成績(jī)(均取整數(shù))如下表所示:
60分及以下 | 61~70分 | 71~80分 | 81~90分 | 91~100分 | |
甲班(人數(shù)) | 3 | 6 | 12 | 15 | 9 |
乙班(人數(shù)) | 4 | 7 | 16 | 12 | 6 |
現(xiàn)規(guī)定平均成績(jī)?cè)?0分以上(不含80分)的為優(yōu)秀.
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)列聯(lián)表,并判斷是否有的把握認(rèn)為“加強(qiáng)‘語(yǔ)文閱讀理解’訓(xùn)練對(duì)提高‘?dāng)?shù)學(xué)應(yīng)用題’得分率”有幫助;
(2)對(duì)甲乙兩班60分及以下的同學(xué)進(jìn)行定期輔導(dǎo),一個(gè)月后從中抽取3人課堂檢測(cè),表示抽取到的甲班學(xué)生人數(shù),求及至少抽到甲班1名同學(xué)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某圓的極坐標(biāo)方程為,求
(1)圓的普通方程和參數(shù)方程;
(2)圓上所有點(diǎn)中的最大值和最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com