直四棱柱的底面是菱形,,其側面展開圖是邊長為的正方形.、分別是側棱上的動點,

(Ⅰ)證明:;
(Ⅱ)在棱上,且,若∥平面,求.

(Ⅰ)見解析 (Ⅱ)2

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

( 12分)如圖,在四棱錐中,側面是正三角形,底面是邊長為2的正方形,側面平面的中點.

①求證:平面;
②求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(13分)如圖,正方體中.
(Ⅰ)求所成角的大小;
(Ⅱ)求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)如圖,、分別是正三棱柱的棱的中點,且棱.

(Ⅰ)求證:平面;
(Ⅱ)在棱上是否存在一點,使二面角的大小為,若存在,求的長;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)在如圖所示的幾何體中,四邊形ABCD為平行四邊形,∠ ACB=,EF∥AB,F(xiàn)G∥BC,EG∥AC. AB="2EF." 若M是線段AD的中點。求證:GM∥平面ABFE 
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如圖(1)在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分別是PC、PD、BC的中點,現(xiàn)將△PDC沿CD折起,使平面PDC⊥平面ABCD(如圖2)
(1)求二面角G-EF-D的大;
(2)在線段PB上確定一點Q,使PC⊥平面ADQ,并給出證明過程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面是矩形,側棱PD⊥底面ABCD,PD=DC,E是PC的中點,作EF⊥PB交PB于點F.
(1)證明:PA∥平面EDB;
(2)證明:PB⊥平面EFD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(14分)(理)在長方體ABCD—A1B1C1D1,中,AD=AA1=1,AB=2,點E在棱
AD上移動.
(1)證明:D1E⊥A1D;
(2)當E為AB的中點時,求點E到面ACD1的距離;
(3)AE等于何值時,二面角D1—EC—D的大小為。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,側棱垂直底面的三棱柱的底面位于平行四邊形中,,,,點中點.
(Ⅰ)求證:平面平面.
(Ⅱ)設二面角的大小為,直線與平面所成的角為,求的值.

查看答案和解析>>

同步練習冊答案