直三棱柱中,,,點D在上.

(1)求證:

(2)若D是AB中點,求證:AC1∥平面B1CD;

(3)當(dāng)時,求二面角的余弦值.

 

【答案】

(Ⅰ)證明略(Ⅱ)證明略   (Ⅲ)二面角的余弦值為

【解析】本試題主要是考查了立體幾何中的線面平行的證明,以及線線垂直的證明和二面角的求解的綜合運用。

(1)根據(jù)已知條件我們知道,AC⊥BC.再結(jié)合三棱柱的性質(zhì)可知線面垂直,然后利用線線垂直得到證明。

(2)要證明線面平行,一般先證明線線平行,然后結(jié)合判定定理得到結(jié)論。

(3)合理的建立空間直角坐標(biāo)系,然后利用平面的法向量,借助于向量的夾角公式得到二面角的平面角的表示。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直三棱柱中,∠ACB=90°,AC=BC=1,側(cè)棱AA1=
2
,M為A1B1的中點,則AM與平面AA1C1C所成角的正切值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直三棱柱中ABC-A1B1C1中,B1C1=A1C1,AC1⊥A1B,M,N分別為A1B1,AB中點,
求證:
(1)平面AMC1∥平面NB1C;
(2)A1B⊥AM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•江蘇二模)在直三棱柱中,AC⊥BC,AC=4,BC=CC1=2,若用平行于三棱柱A1B1C1-ABC的某一側(cè)面的平面去截此三棱柱,使得到的兩個幾何體能夠拼接成長方體,則長方體表面積的最小 值為
24
24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•上海模擬)直三棱柱中,AB=AC=1,AA1=2,∠B1A1C1=90°,BD=DB1
(1)求證:AD⊥平面A1DC1
(2)求異面直線C1D,A1C所成角的余弦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(重慶卷解析版) 題型:解答題

已知直三棱柱中,,,的中點。(Ⅰ)求異面直線的距離;(Ⅱ)若,求二面角的平面角的余弦值。

 

查看答案和解析>>

同步練習(xí)冊答案