頂點在原點,以軸為對稱軸且經(jīng)過點的拋物線的標準方程為___________.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題


.本小題滿分15分)
如圖,已知橢圓E,焦點為、,雙曲線G的頂點是該橢圓的焦點,設(shè)是雙曲線G上異于頂點的任一點,直線、與橢圓的交點分別為A、BC、D,已知三角形的周長等于,橢圓四個頂點組成的菱形的面積為.

(1)求橢圓E與雙曲線G的方程;
(2)設(shè)直線、的斜率分別為,探求
的關(guān)系;
(3)是否存在常數(shù),使得恒成立?
若存在,試求出的值;若不存在, 請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

平面區(qū)域是由雙曲線的兩條漸近線和拋物線的準線所圍
成的三角形(含邊界與內(nèi)部).若點,則目標函數(shù)的最大值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知是橢圓的左、右焦點,過點
傾斜角為的直線交橢圓于兩點,
(1)求橢圓的離心率;
(2)若,求橢圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題10分)已知拋物線C:,過原點O作拋物線C的切線使切點P在第一象限,
(1)求k的值;
(2)過點P作切線的垂線,求它與拋物線C的另一個交點Q的坐標。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)橢圓的焦點在軸上,,,則這樣的橢圓個數(shù)共有                                                    (   )
、           、               、             、

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
已知橢圓上的一動點到右焦點的最短距離為,且右焦點到右準線的距離等于短半軸的長.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 過點()的動直線交橢圓、兩點,試問:在坐標平面上是否存在一個定點,使得無論如何轉(zhuǎn)動,以為直徑的圓恒過定點?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

不論如何變化,方程,都表示頂點在同一曲線上的拋物線,該曲線的方程為______________________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線的左、右焦點分別為,拋物線的頂點在原點,它的準線與雙曲線的左準線重合,若雙曲線與拋物線的交點滿足,則雙曲線的離心率為         .

查看答案和解析>>

同步練習冊答案