已知數(shù)列{an}前n項(xiàng)和數(shù)學(xué)公式,則an=


  1. A.
    數(shù)學(xué)公式
  2. B.
    3n-1
  3. C.
    3•2n-1
  4. D.
    2•3n-1
D
分析:由已知的等式,再寫(xiě)一式,兩式相減得第n項(xiàng)和與第n-1項(xiàng)和的差為an,從而得到此數(shù)列通項(xiàng)公式,把n=4代入通項(xiàng)公式,由a4=54,得到a1,然后寫(xiě)出通項(xiàng)公式即可.
解答:∵①,
∴n≥2時(shí),②,
①-②得:an=
把n=4,代入,得:=54,∴a1=2,
∴an=1×(3n-3n-1)=2•3n-1
故選D.
點(diǎn)評(píng):本題考查數(shù)列的遞推式,考查確定數(shù)列的通項(xiàng),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}前 n項(xiàng)和為Sn,且Sn=n2
(1)求{an}的通項(xiàng)公式    
(2)設(shè) bn=
1anan+1
,求數(shù)列{bn}的前 n項(xiàng) 和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}前n項(xiàng)和Sn和通項(xiàng)an滿足Sn=-
1
2
(an-1)

(1)求數(shù)列{an}的通項(xiàng)公式; 
(2)試證明Sn
1
2

(3)設(shè)函數(shù)f(x)=log
1
3
x
,bn=f(a1)+f(a2)+…+f(an),求
1
b1
+
1
b2
+…+
1
b99
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}前n項(xiàng)和Sn=2n-1,則數(shù)列{an}的奇數(shù)項(xiàng)的前n項(xiàng)的和是
4n-1
3
4n-1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}前n項(xiàng)和Sn=2an+2n,
(Ⅰ)證明數(shù)列{
an
2n-1
}
是等差數(shù)列,并求{an}的通項(xiàng)公式;
(Ⅱ)若bn=
(n-2011)an
n+1
,求數(shù)列{bn}是否存在最大值項(xiàng),若存在,說(shuō)明是第幾項(xiàng),若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)設(shè)Tn=|S1|+|S2|+|S3|+…+|Sn|,試比較
Tn+Sn
2
2-n
1+n
an
的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}前n項(xiàng)和Sn=n2+2n,設(shè)bn=
1anan+1

(1)試求an;
(2)求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案