已知復(fù)數(shù)z=(2m2-3m-2)+(m2-3m+2)i.
(Ⅰ)當(dāng)實數(shù)m取什么值時,復(fù)數(shù)z是:
①實數(shù); 
②純虛數(shù);
(Ⅱ)當(dāng)m=0時,化簡
z2
z+5+2i
考點:復(fù)數(shù)的代數(shù)表示法及其幾何意義
專題:數(shù)系的擴充和復(fù)數(shù)
分析:(I)利用復(fù)數(shù)為實數(shù)、純虛數(shù)的充要條件即可得出.
(II)當(dāng)m=0時,z=-2+2i,再利用復(fù)數(shù)的運算法則即可得出.
解答: 解:(Ⅰ)①當(dāng)m2-3m+2=0時,即m=1或m=2時,復(fù)數(shù)z為實數(shù).
②當(dāng)
2m2-3m-2=0
m2-3m+2≠0
時,解得
m=-
1
2
或m=2
m≠1且m≠2

即m=-
1
2
時,復(fù)數(shù)z為純虛數(shù).
(Ⅱ)當(dāng)m=0時,z=-2+2i,
z2
z+5+2i
=
-8i
3+4i
=
-8i(3-4i)
25
=-
32
25
-
24
25
i
點評:本題考查了復(fù)數(shù)為實數(shù)、純虛數(shù)的充要條件、復(fù)數(shù)的運算法則,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個袋中裝有大小相同的黑球和白球共9個,從中任取2個球,記隨機變量X為取出2球中白球的個數(shù),已知P(X=2)=
5
12

(Ⅰ)求袋中白球的個數(shù);
(Ⅱ)求隨機變量X的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)招聘教師有筆試、面試兩個環(huán)節(jié),筆試成績超過85分者才能進入面試環(huán)節(jié),現(xiàn)已記錄前來應(yīng)聘的9位男教師和9位女教師的筆試成績,成績用莖葉圖表示如圖所示.
(Ⅰ)求男教師的平均成績和女教師成績的中位數(shù);
(Ⅱ)從進入面試環(huán)節(jié)的老師中隨機挑選2位老師,求2位老師中至少有一位男教師的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(cosx+sinx)(cosx-sinx).
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若0<α<
π
2
,0<β<
π
2
,且f(
α
2
)=
1
3
,f(
β
2
)=
2
3
,求sin(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察等式:
sin50°+sin20°=2sin35°cos15°
sin66°+sin32°=2sin49°cos17°
猜想符合以上兩式規(guī)律的一般結(jié)論,并進行證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)-1+3i、cosα+isinα(0<α<
π
2
,i是虛數(shù)單位)在復(fù)平面上對應(yīng)的點依次為A、B,點O是坐標(biāo)原點.
(1)若OA⊥OB,求tanα的值;
(2)若B點的橫坐標(biāo)為
4
5
,求S△AOB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班50位同學(xué),期中考試成績?nèi)柯湓赱90,150]上,將成績分成6組:[90,100),[100,110),[110,120),[120,130),[130,140),[140,150],加以統(tǒng)計,得到如圖所示的部分頻率分布直方圖.
(Ⅰ)求成績在[110,120)上的學(xué)生人數(shù),并將頻率分布直方圖補充完整;
(Ⅱ)從成績不低于130的學(xué)生中隨機抽取兩名,求至少一名學(xué)生的成績不低于140的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=
1,x>0
0,x=0
-1,x<0
,若函數(shù)f(x)=2x•g(lnx)+1-x2,則該函數(shù)的零點個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用秦九韶算法計算f(x)=3x5+5x4+6x3-8x2+35x+12,當(dāng)x=-2時,v4=
 

查看答案和解析>>

同步練習(xí)冊答案