已知{ an }是各項(xiàng)為正數(shù)的等比數(shù)列,且a1 = 1,a+ a3 = 6,
求該數(shù)列前10項(xiàng)的和S10

解:解:設(shè)該數(shù)列的公比為q,由已知a2 + a3 =" 6" ,即a1 ( q + q2 ) =" 6" ,∵a=" 1" ,∴q+ q-6  =" " 0 ,得 q1 =" 2" ,q2 = -3(舍去),∴數(shù)列 {}的首項(xiàng)為a1 = 1,公比q = 2,∴S10 =

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)設(shè){an}是集合{2s+2t|0≤s<t且s,t∈Z}中所有的數(shù)從小到大排列成的數(shù)列,即a1=3,a2=5,a3=6,a4=9,a5=10,a6=12,…將數(shù)列{an}各項(xiàng)按照上小下大,左小右大的原則寫(xiě)成如下的三角形數(shù)表:
3
5     6
9     10    12
------------

①寫(xiě)出這個(gè)三角形數(shù)表的第四行、第五行各數(shù);
②求a100
(2)設(shè){bn}是集合{2r+2s+2t|0≤r<s<t,且r,s,t∈Z}中所有的數(shù)從小到大排列成的數(shù)列,已知bk=1160,求k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)數(shù)列{an}的各項(xiàng)均不相等,且2an=an-1+an+1(n∈N*,n≥2),則下列各不等式中一定成立的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)設(shè){an}是集合{2s+2t|0≤s<t且s,t∈Z}中所有的數(shù)從小到大排列成的數(shù)列,即a1=3,a2=5,a3=6,a4=9,a5=10,a6=12,…將數(shù)列{an}各項(xiàng)按照上小下大,左小右大的原則寫(xiě)成如下的三角形數(shù)表:
3
5   6
9   10  12
------------

①寫(xiě)出這個(gè)三角形數(shù)表的第四行、第五行各數(shù);
②求a100
(2)設(shè){bn}是集合{2r+2s+2t|0≤r<s<t,且r,s,t∈Z}中所有的數(shù)從小到大排列成的數(shù)列,已知bk=1160,求k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:高考真題 題型:解答題

(Ⅰ)設(shè){an}是集合{2t+2s|0≤s<t,且s,t∈Z} 中所有的數(shù)從小到大排列成的數(shù)列,即a1=3,a2=5,a3=6,a4=9,a5=10,a6=12,……
將數(shù)列{an}各項(xiàng)按照上小下大,左小右大的原則寫(xiě)成如下的三角形數(shù)表: 

(ⅰ)寫(xiě)出這個(gè)三角形數(shù)表的第四行、第五行各數(shù);
(ⅱ)求a100;
(Ⅱ)設(shè){bn}是集合{2r+2t+2s|0≤r<s<t,且r,s,t∈Z} 中所有的數(shù)都是從小到大排列成的數(shù)列,已知bk=1160,求k。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(Ⅰ)設(shè){an}是集合中所有的數(shù)從小到大排列成的數(shù)列,即a1=3,a2=5,a3=6,a4=9,a5=10,a6=12,……

將數(shù)列{an}各項(xiàng)按照上小下大,左小右大的原則寫(xiě)成如下的三角形數(shù)表:

(i)寫(xiě)出這個(gè)三角形數(shù)表的第四行、第五行各數(shù);

(ii)求a100

(Ⅱ)(本小題為附加題,如果解答正確,加4分,但全卷總分不超過(guò)150分)

設(shè){bn}是集合中所有的數(shù)從小到大排列成的數(shù)列,已知bk =1160,求k

查看答案和解析>>

同步練習(xí)冊(cè)答案