B
分析:根據偶函數的圖象關于y軸對稱,結合已知函數的單調性,逐一加以研究.偶函數的圖象關于y軸對稱,x∈[1,2]時,f(x)為增函數,所以f(x)在[-2,-1]上單調遞減;②x∈[1,2]時,f(x)<0,所以當x∈[-2,-1]時,有f(x)<0;③f(-x)=f(x).由①知f(x)在[-2,-1]上單調遞減;④|f(x)|的圖象是將f(x)下方的圖象,翻折到x軸上方,由于f(x)在[-2,-1]上單調遞減,所以|f(x)|在[-2,-1]上單調遞增,故可得結論.
解答:①偶函數的圖象關于y軸對稱,x∈[1,2]時,f(x)為增函數,所以f(x)在[-2,-1]上單調遞減,故①錯誤;
②偶函數的圖象關于y軸對稱,x∈[1,2]時,f(x)<0,所以當x∈[-2,-1]時,有f(x)<0,故②正確;
③∵函數f(x)是偶函數,∴f(-x)=f(x).由①知f(x)在[-2,-1]上單調遞減,故③正確;
④|f(x)|的圖象是將f(x)下方的圖象,翻折到x軸上方,由于f(x)在[-2,-1]上單調遞減,所以|f(x)|在[-2,-1]上單調遞增,故④錯誤
綜上可知,正確的結論是②③
故選B.
點評:本題以偶函數為載體,綜合考查函數的奇偶性與單調性,考查偶函數圖象的對稱性,需要逐一驗證,屬于基礎題.