【題目】在直三棱柱ABC-A1B1C1中,底面△ABC是直角三角形,AC=BC=AA1=2D為側(cè)棱AA1的中點(diǎn).

1)求異面直線DC1,B1C所成角的余弦值;

2)求二面角B1-DC-C1的平面角的余弦值.

【答案】1 2

【解析】

1)以C為原點(diǎn),CA、CB、CC1為坐標(biāo)軸,建立空間直角坐標(biāo)系Cxyz,寫出要用的點(diǎn)的坐標(biāo),寫出兩個(gè)向量的方向向量,根據(jù)兩個(gè)向量所成的角得到兩條異面直線所成的角.

2)先求兩個(gè)平面的法向量,在第一問的基礎(chǔ)上,有一個(gè)平面的法向量是已知的,只要寫出向量的表示形式就可以,另一個(gè)平面的向量需要求出,根據(jù)兩個(gè)法向量所成的角得到結(jié)果.

1)如圖所示,以C為原點(diǎn),CA、CBCC1為坐標(biāo)軸,建立空間直角坐標(biāo)系

Cxyz

C0,0,0),A2,0,0),B0,2,0),C10,0,2),B10,2,2),D2,01).

所以(﹣2,01),0,﹣2,﹣2).

所以cos

即異面直線DC1B1C所成角的余弦值為

2)因?yàn)?/span>02,0),2,0,0),0,0,2),

所以00,

所以為平面ACC1A1的一個(gè)法向量.

因?yàn)?/span>0,﹣2,﹣2),20,1),

設(shè)平面B1DC的一個(gè)法向量為n,n=(xy,z).

,得

令/span>x1,則y2,z=﹣2,n=(12,﹣2).

所以cosn

所以二面角B1DCC1的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)A的極坐標(biāo)(,),直線l的極坐標(biāo)方程為ρcos(θ)=a,.

(1)若點(diǎn)A在直線l上,求直線l的直角坐標(biāo)方程;

(2)C的參數(shù)方程為(為參數(shù)),若直線與圓C相交的弦長為,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方體ABCDA1B1C1D1中,設(shè)線段A1C與平面ABC1D1交于點(diǎn)Q,求證:B,Q,D1三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汽車的燃油效率是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )

A. 消耗1升汽油,乙車最多可行駛5千米

B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多

C. 甲車以80千米/小時(shí)的速度行駛1小時(shí),消耗10升汽油

D. 某城市機(jī)動(dòng)車最高限速80千米/小時(shí). 相同條件下,在該市用丙車比用乙車更省油

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),則下列判斷正確的是(

A.為奇函數(shù)

B.對(duì)任意,,則有

C.對(duì)任意,則有

D.若函數(shù)有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是矩形,點(diǎn)E在棱PC異于點(diǎn)P,,平面ABE與棱PD交于點(diǎn)F

求證:;

,求證:平面平面ABCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其最小正周期為

(1)求 的表達(dá)式;

(2)將函數(shù)的圖象向右平移個(gè)單位長度后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的倍(縱坐標(biāo)不變),得到函數(shù) 的圖象,若關(guān)于 的方程 在區(qū)間 上有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年8月18日,舉世矚目的第18屆亞運(yùn)會(huì)在印尼首都雅加達(dá)舉行,為了豐富亞運(yùn)會(huì)志愿者的業(yè)余生活,同時(shí)鼓勵(lì)更多的有志青年加入志愿者行列,大會(huì)主辦方?jīng)Q定對(duì)150名志愿者組織一次有關(guān)體育運(yùn)動(dòng)的知識(shí)競賽(滿分120分)并計(jì)劃對(duì)成績前15名的志愿者進(jìn)行獎(jiǎng)勵(lì),現(xiàn)將所有志愿者的競賽成績制成頻率分布直方圖,如圖所示,若第三組與第五組的頻數(shù)之和是第二組的頻數(shù)的3倍,試回答以下問題:

(1)求圖中的值;

(2)求志愿者知識(shí)競賽的平均成績;

(3)從受獎(jiǎng)勵(lì)的15人中按成績利用分層抽樣抽取5人,再從抽取的5人中,隨機(jī)抽取2人在主會(huì)場(chǎng)服務(wù),求抽取的這2人中其中一人成績?cè)?/span>分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,求證:函數(shù)有極值;

(2)若,且函數(shù)的圖象有兩個(gè)相異交點(diǎn),求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案