若函數(shù)f(x)的定義域是[0,4],則函g(x)=的定義域是( )
A.[0,2]
B.(0,2)
C.(0,2]
D.[0,2)
【答案】分析:根據(jù)f(2x)中的2x和f(x)中的x的取值范圍一樣得到:0≤2x≤4,又分式中分母不能是0,即:x≠0,解出x的取值范圍,得到答案.
解答:解:因為f(x)的定義域為[0,4],
所以對g(x),0≤2x≤4但x≠0故x∈(0,1],
故選C.
點評:本題考查求復(fù)合函數(shù)的定義域問題,解決此類題目的關(guān)鍵是f[g(x)]中g(shù)(x)相當(dāng)于f(x)中的x,建立不等式,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)是定義在R上的偶函數(shù),在(-∞,0]上是減函數(shù),且f(2)=0,則使得(x-1)f(x)<0的x的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)是定義在R上的偶函數(shù),在(-∞,0]上是減函數(shù),且f(2)=0,則使得f(x-1)<0的x的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)是定義在R上的偶函數(shù),在(-∞,0]上是減函數(shù),且f(1)=0,則使得f(x)<0的x得取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中:
①若函數(shù)f(x)的定義域為R,則g(x)=f(x)+f(-x)一定是偶函數(shù);
②若f(x)是定義域為R的奇函數(shù),對于任意的x∈R都有f(x)+f(2+x)=0,則函數(shù)f(x)的圖象關(guān)于直線x=1對稱;
③已知x1,x2是函數(shù)f(x)定義域內(nèi)的兩個值,且x1<x2,若f(x1)>f(x2),則f(x)是減函數(shù);
④若f(x)是定義在R上的奇函數(shù),且f(x+2)也為奇函數(shù),則f(x)是以4為周期的周期函數(shù).
其中正確的命題序號是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos2x+sinx
(Ⅰ)若函數(shù)f(x)的定義為R,求函數(shù)f(x)的值域;
(Ⅱ)函數(shù)f(x)在區(qū)間[0,
π2
]
上是不是單調(diào)函數(shù)?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案