定義函數(shù).
(1)令函數(shù)的圖象為曲線,若存在實數(shù),使得曲線在處有斜率是的切線,求實數(shù)的取值范圍;
(2)當,且時,證明:.
科目:高中數(shù)學(xué) 來源: 題型:解答題
(附加題)本小題滿分10分
已知是定義在上單調(diào)函數(shù),對任意實數(shù)有:且時,.
(1)證明:;
(2)證明:當時,;
(3)當時,求使對任意實數(shù)恒成立的參數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)是定義在(0,+∞)上的單調(diào)增函數(shù),滿足f(xy)=f(x)+f(y),f(3)=1
(1)求f(1)的值
(2)若滿足f(x) +f(x-8)≤2 求x的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
如圖:某污水處理廠要在一個矩形污水處理池的池底水平鋪設(shè)污水凈化管道,是直角頂點)來處理污水,管道越短,鋪設(shè)管道的成本越低.設(shè)計要求管道的接口是的中點,分別落在線段上。已知米,米,記。
(Ⅰ)試將污水凈化管道的長度表示為的函數(shù),并寫出定義域;
(Ⅱ)若,求此時管道的長度;
(Ⅲ)問:當取何值時,鋪設(shè)管道的成本最低?并求出此時管道的長度。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(13分)(1)二次函數(shù)滿足:為偶函數(shù)且,求的解析式;
(2)若函數(shù)定義域為,求取值范圍。
(3)若函數(shù)值域為,求取值范圍。
(4)若函數(shù)在上單調(diào)遞減,求取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知定義域為的單調(diào)函數(shù)且圖關(guān)于點對稱,當時,.
(1)求的解析式;
(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)已知是定義在上的奇函數(shù),當時,
(1)求的解析式;
(2)是否存在負實數(shù),使得當的最小值是4?如果存在,求出的值;如果不存在,請說明理由.
(3)對如果函數(shù)的圖像在函數(shù)的圖像的下方,則稱函數(shù)在D上被函數(shù)覆蓋.求證:若時,函數(shù)在區(qū)間上被函數(shù)覆蓋.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com