精英家教網 > 高中數學 > 題目詳情

【題目】如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB,則下列結論中:①PB⊥AE;②平面ABC⊥平面PBC;③直線BC∥平面PAE;④∠PDA=45°.

其中正確的有____________(把所有正確的序號都填上).

【答案】①④

【解析】對于①,因為PA⊥平面ABC,所以PA⊥AE,又,所以平面PAB,從而可得,故①正確。

對于②,由于PA⊥平面ABC,所以平面ABC與平面PBC不可能垂直,故②不正確。

對于③,由于在正六邊形中,所以BC與EA必有公共點,從而BC與平面PAE有公共點,所以直線BC與平面PAE不平行,故③不正確。

對于④,由條件得為直角三角形,且PA⊥AD,又,所以∠PDA=45°。故④正確。

綜上①④正確。

答案:①④

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】隨機擲兩枚質地均勻的骰子,它們向上的點數之和不超過5的概率記為p1,點數之和大于5的概率記為p2,點數之和為偶數的概率記為p3,則

 (  )

A. p1<p2<p3 B. p2<p1<p3 C. p1<p3<p2 D. p3<p1<p2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2-2aln x+(a-2)x,a∈R.

(1)當a=1時,求函數f(x)的圖象在點(1,f(1))處的切線方程.

(2)是否存在實數a,對任意的x1,x2∈(0,+∞)且x1≠x2>a恒成立?若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某班主任對全班50名學生的學習積極性和對待班級工作的態(tài)度進行了調查,統計數據如下表所示:

積極參加班級工作

不太主動參加班級工作

合計

學習積極性一般

6

19

25

合計

24

26

50

(1)如果隨機抽查這個班的一名學生,那么抽到積極參加班級工作的學生的概率是多少?抽到不太主動參加班級工作且學習積極性一般的學生的概率是多少?

(2)判斷是否有的把握認為學生的學習積極性與對待班級工作的態(tài)度有關系?

, n=a+b+c+d.

P(K2k)

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】a、b是方程2(lg x)2-lg x4+1=0的兩個實根,求lg(ab)·(logab+logba)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題滿分14分)

如圖,四邊形是正方形,均是以為直角頂點的等腰直角三角形,點的中點,點是邊上的任意一點.

1)求證: ;

2)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此做了四次試驗,得到的數據如下表所示:

零件的個數x/個

2

3

4

5

加工的時間y/h

2.5

3

4

4.5

(1)在給定的坐標系中畫出表中數據的散點圖;

(2)求出y關于x的線性回歸方程,并在坐標系中畫出回歸直線;

(3)試預測加工10個零件需要多少時間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,ABCDA1B1C1D1是正方體,畫出圖中陰影部分的平面與平面ABCD的交線,并給出證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖在正方體ABCD-A1B1C1D1,EF,P,Q,M,N分別是棱AB,ADDD1,BB1,A1B1,A1D1的中點.求證

(1)直線BC1∥平面EFPQ.

(2)直線AC1⊥平面PQMN.

查看答案和解析>>

同步練習冊答案