在△ABC中,已知a=1,b=2,C=60°,則邊c為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    3
  4. D.
    4
A
分析:根據(jù)已知a=1,b=2,C=60°,由余弦定理可得 c2=a2+b2-2ab•cosC 的值,從而求得c的值.
解答:在△ABC中,∵已知a=1,b=2,C=60°,由余弦定理可得 c2=a2+b2-2ab•cosC=1+4-4cos60°=3,
故c=,
故選A.
點評:本題主要考查余弦定理的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知A、B、C成等差數(shù)列,求tg(
A
2
)+
3
tg(
A
2
)tg(
C
2
)+tg(
C
2
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知A=45°,a=2,b=
2
,則B等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知a=
3
,b=
2
,1+2cos(B+C)=0,求:
(1)角A,B; 
(2)求BC邊上的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知A=60°,
AB
AC
=1,則△ABC的面積為
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知a=1,b=2,cosC=
34

(1)求AB的長;
(2)求sinA的值.

查看答案和解析>>

同步練習(xí)冊答案