【題目】已知函數(shù)f(x)=|x+1|,g(x)=2|x|+a.
(Ⅰ)當a=0時,解不等式f(x)≥g(x);
(Ⅱ)若存在x∈R,使得f(x)≥g(x)成立,求實數(shù)a的取值范圍.
【答案】解:(Ⅰ)當a=0時,不等式即|x+1|≥2|x|,平方可得x2+2x+1≥4x2 , 解得﹣ ≤x≤1,
故不等式的解集為[﹣ ,1].
(Ⅱ)若存在x∈R,使得f(x)≥g(x)成立,即|x+1|﹣2|x|≥a.
設(shè)h(x)=|x+1|﹣2|x|= .
故當x≥0時,h(x)≤1. 當﹣1≤x<0時,﹣2≤h(x)<1. 當x<﹣1時,h(x)<﹣2.
綜上可得h(x)的最大值為1.
由題意可得1≥a,故實數(shù)a的取值范圍為(﹣∞,1].
【解析】(Ⅰ)當a=0時,不等式即|x+1|≥2|x|,平方可得x2+2x+1≥4x2 , 由此求得不等式的解集.(Ⅱ)由題意可得|x+1|﹣2|x|≥a恒成立,求出h(x)的最大值為1,可得1≥a,由此求得實數(shù)a的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x+1|+|x﹣3|,g(x)=a﹣|x﹣2|. (Ⅰ)若關(guān)于x的不等式f(x)<g(x)有解,求實數(shù)a的取值范圍;
(Ⅱ)若關(guān)于x的不等式f(x)<g(x)的解集為 ,求a+b的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】等差數(shù)列{an}中,已知a3=5,且a1 , a2 , a5為遞增的等比數(shù)列. (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}的通項公式 (k∈N*),求數(shù)列{bn}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax﹣lnx,F(xiàn)(x)=ex+ax,其中x>0,a<0.
(1)若f(x)和F(x)在區(qū)間(0,ln3)上具有相同的單調(diào)性,求實數(shù)a的取值范圍;
(2)若a∈(﹣∞,﹣ ],且函數(shù)g(x)=xeax﹣1﹣2ax+f(x)的最小值為M,求M的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某花店每天以每枝5元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝10元的價格出售,如果當天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購進16枝玫瑰花,求當天的利潤y(單位:元)關(guān)于當天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得如表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(i)若花店一天購進16枝玫瑰花,X表示當天的利潤(單位:元),求X的分布列,數(shù)學期望及方差;
(ii)若花店計劃一天購進16枝或17枝玫瑰花,你認為應購進16枝還是17枝?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 與拋物線y2=2px(p>0)共焦點F2 , 拋物線上的點M到y(tǒng)軸的距離等于|MF2|﹣1,且橢圓與拋物線的交點Q滿足|QF2|= . (Ⅰ)求拋物線的方程和橢圓的方程;
(Ⅱ)過拋物線上的點P作拋物線的切線y=kx+m交橢圓于A、B兩點,求此切線在x軸上的截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】當今,手機已經(jīng)成為人們不可或缺的交流工具,人們常常把喜歡玩手機的人冠上了名號“低頭族”,手機已經(jīng)嚴重影響了人們的生活,一媒體為調(diào)查市民對低頭族的認識,從某社區(qū)的500名市民中,隨機抽取n名市民,按年齡情況進行統(tǒng)計的得到頻率分布表和頻率分布直方圖如下:
組數(shù) | 分組(單位:歲) | 頻數(shù) | 頻率 |
1 | [20,25) | 5 | 0.05 |
2 | [25,30) | 20 | 0.20 |
3 | [30,35) | a | 0.35 |
4 | [35,40) | 30 | b |
5 | [40,45] | 10 | 0.10 |
合計 | n | 1.00 |
(1)求出表中的a,b,n的值,并補全頻率分布直方圖;
(2)媒體記者為了做好調(diào)查工作,決定從所隨機抽取的市民中按年齡采用分層抽樣的方法抽取20名接受采訪,再從抽出的這20名中年齡在[30,40)的選取2名擔任主要發(fā)言人.記這2名主要發(fā)言人年齡在[35,40)的人數(shù)為ξ,求ξ的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】兩個單位向量 , 的夾角為60°,點C在以O(shè)圓心的圓弧AB上移動, =x +y ,則x+y的最大值為( )
A.1
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱柱 中,底面 為矩形,面 ⊥平面 , = = = , =2, 是 的中點.
(Ⅰ)求證: ⊥ ;
(Ⅱ)求BD與平面 所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com