曲線
在
處的切線的斜率是( )
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分14分)如圖,拋物線
的焦點為F,橢圓
的離心率
,C
1與C
2在第一象限的交點為
(1)求拋物線C
1及橢圓C
2的方程;
(2)已知直線
與橢圓C
2交于不同兩點A、B,點M滿足
,直線FM的斜率為k
1,試證明
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知直線
,則拋物線
上到直線距離最小的點的坐標(biāo)為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題共14分)
設(shè)函數(shù)
(
).
(Ⅰ)當(dāng)
時,求
的極值;
(Ⅱ)當(dāng)
時,求
的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)
在平面直角坐標(biāo)系中,已知點
,點
在直線
上運動,過點
與
垂直的直線和
的中垂線相交于點
.
(Ⅰ)求動點
的軌跡
的方程;
(Ⅱ)設(shè)點
是軌跡
上的動點,點
,
在
軸上,圓
(
為參數(shù))內(nèi)切于
,求
的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分16分,第(1)小題4分,第(2)小題8分,第(3)小題4分)
已知橢圓
的左右焦點分別為
,短軸兩個端點為
,且四邊形
是邊長為2的正方形。
(1)求橢圓方程;
(2)若
分別是橢圓長軸的左右端點,動點
滿足
,連接
,交橢圓于
點
。證明:
為定值;
(3)在(2)的條件下,試問
軸上是否存在異于點
的定點
,使得以
為直徑的圓恒過直線
的交點,若存在,求出點
的坐標(biāo);若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,等腰直角三角形
ABC的斜邊
AB在
軸上,原點
O為
AB的中點,
,
D是
OC的中點.以
A、
B為焦點的橢圓
E經(jīng)過點
D.
(1)求橢圓
E的方程;
(2)過點
C的直線
與橢圓
E相交于不同的兩點
M、
N,點
M在點
C、
N之間,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知拋物線的焦點坐標(biāo)是
,則該拋物線的準(zhǔn)線方程為 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知直線
y=
x+1與橢圓
(
m>
n>0)相交于
A,
B兩點,若弦
AB的中點的橫坐標(biāo)等于
,則雙曲線
的兩條漸近線的夾角的正切值等于_______.
查看答案和解析>>