已知向量
a
b
均為單位向量,若它們的夾角是60°,則|
a
-3
b
|等于
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算,向量的模
專題:計(jì)算題
分析:由題意并且結(jié)合平面數(shù)量積的運(yùn)算公式可得|
a
-3
b
|,通過平方即可求解,可得答案.
解答: 解:因?yàn)橄蛄?span id="1t2nzw6" class="MathJye">
a
,
b
均為單位向量,它們的夾角為60°,
所以|
a
-3
b
|2=
a
2
-6
a
b
+9
b
2
=10-3=7
所以|
a
-3
b
|=
7

故答案為:
7
點(diǎn)評(píng):解決此類問題的關(guān)鍵是熟練掌握平面向量數(shù)量積的運(yùn)算性質(zhì)與公式,以及向量的求模公式的應(yīng)用,此題屬于基礎(chǔ)題主要細(xì)心的運(yùn)算即可得到全分.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,過圓ρ=4cosθ的圓心,且垂直于極軸的直線的極坐標(biāo)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)A(1,2,3)在坐標(biāo)平面yOz內(nèi)的射影是點(diǎn)B的坐標(biāo)是( 。
A、(0,2,3)
B、(1,0,3)
C、(1,2,0)
D、(1,0,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log
1
2
(-x2+3x+10)
的增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)和g(x)滿足g(x)≠0,f'(x)•g(x)>f(x)•g'(x),f(x)=ax•g(x),
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
.令an=
f(n)
g(n)
,則使數(shù)列{an}的前n項(xiàng)和Sn超過100的最小自然數(shù)n的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義行列式運(yùn)算:
.
a1a2
a3a4
.
=a1a4-a2a3,將函數(shù)f(x)=
.
3
cosx
1sinx
.
的圖象向左平移m個(gè)單位(m>0),若所得圖象對(duì)應(yīng)的函數(shù)為偶函數(shù),則m的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)是定義在R上的偶函數(shù),且對(duì)任意實(shí)數(shù)x,都有f(x+1)=f(x-1)成立.已知當(dāng)x∈[1,2]時(shí),f(x)=logax.
(1)求x∈[-1,1]時(shí),函數(shù)f(x)的表達(dá)式;
(2)若函數(shù)f(x)的最大值為
1
2
,在區(qū)間[-1,3]上,解關(guān)于x的不等式f(x)>
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)對(duì)任意x,y∈R,滿足f(x)+f(y)=f(x+y)+2,當(dāng)x>0時(shí),f(x)>2.
(1)求證:f(x)在R上是增函數(shù);
(2)當(dāng)f(3)=5時(shí),解不等式:f(a2-2a-2)<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式
1-x
2x+1
≥0
的解集是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案