對于任意的實數(shù)k,如果關于x的方程f(x)=k最多有2個不同的實數(shù)解,則|f(x)|=m(m為實常數(shù))的不同的實數(shù)解的個數(shù)最多為   
【答案】分析:由題意可得,f(x)必定在某點a兩側單調性相反,它的也就是個“V”型,|f(x)|的圖象有最多的相反單調區(qū)間,就是個“W”型,數(shù)形結合得出結論.
解答:解:由k的條件可以了解到,最多2解的條件下,f(x)必定在某點a兩側單調性相反,它的也就是個“V”型.這樣當a點f(x)值為負,無窮點處值為正時,
|f(x)|的圖象有最多的相反單調區(qū)間,就是個“W”型,這時這個“W”圖象與某條直線y=m的交點最多有4個.
如圖所示:
故答案為 4.

點評:本題主要考查方程的根的存在性及個數(shù)判斷,數(shù)形結合的思想確實很重要,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=ax+b(a>0,a≠1)的圖象如圖所示,數(shù)列{an}的前n項的和Sn=an+1+b、Tn為數(shù)列{bn}的前n項的和.且Tn=
2(n=1)
-10n2-6n+2(n≥2)

(1)求數(shù)列{an}、{bn}的通項公式;
(2)找出所有滿足:an+bn+8=0的自然數(shù)n的值(不必證明);
(3)若不等式Sn+bn+k≥0對于任意的n∈N*.n≥2恒成立,求實數(shù)k的最小值,并求出此時相應的n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•奉賢區(qū)模擬)我們規(guī)定:對于任意實數(shù)A,若存在數(shù)列{an}和實數(shù)x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,則稱數(shù)A可以表示成x進制形式,簡記為:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,則表示A是一個2進制形式的數(shù),且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0),試將m表示成x進制的簡記形式.
(2)若數(shù)列{an}滿足a1=2,ak+1=
1
1-ak
,k∈N*
,bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*),是否存在實常數(shù)p和q,對于任意的n∈N*,bn=p•8n+q總成立?若存在,求出p和q;若不存在,說明理由.
(3)若常數(shù)t滿足t≠0且t>-1,dn=
.
t\~(
C
1
n
)(
C
2
n
)(
C
3
n
)…(
C
n-1
n
)(
C
n
n
)
,求
lim
n→∞
dn
dn+1

查看答案和解析>>

科目:高中數(shù)學 來源:天利38套《2008全國各省市高考模擬試題匯編 精華大字版》、數(shù)學理 題型:044

如圖,曲線y=上的點Pi(,ti)(i=1,2,…,n,…)與x軸正半軸上的點Qi及原點O構成一系列正三角形PiQi-1Qi(Q0與O重合),記an=|QnQn-1|.

(Ⅰ)求a1的值;

(Ⅱ)求數(shù)列{an}的通項公式an;

(Ⅲ)設Sn為數(shù)列{an}的前n項和;若對于任意的實數(shù)λ∈[0,1],總存在自然數(shù)k,當n≥k時,3Sn-3n+2≥(1-λ)(3an-1)恒成立,求k的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,曲線y=上的點Pi(ti2,ti)(i=1,2,…,n,…)與x軸正半軸上的點Qi及原點O構成一系列正三角形PiQi-1Qi(Q0與O重合),記an=|QnQn-1|.

(Ⅰ)求a1的值;

(Ⅱ)求數(shù)列{an}的通項公式an;

(Ⅲ)設Sn為數(shù)列{an}的前n項和;若對于任意的實數(shù)λ∈[0,1],總存在自然數(shù)k,當n≥k時,3Sn-3n+2≥(1—λ)(3an-1)恒成立,求k的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年江蘇省宿遷市高考數(shù)學模擬試卷(二)(解析版) 題型:解答題

已知函數(shù)f(x)=ax+b(a>0,a≠1)的圖象如圖所示,數(shù)列{an}的前n項的和Sn=an+1+b、Tn為數(shù)列{bn}的前n項的和.且
(1)求數(shù)列{an}、{bn}的通項公式;
(2)找出所有滿足:an+bn+8=0的自然數(shù)n的值(不必證明);
(3)若不等式Sn+bn+k≥0對于任意的n∈N*.n≥2恒成立,求實數(shù)k的最小值,并求出此時相應的n的值.

查看答案和解析>>

同步練習冊答案