已知各項(xiàng)都不相等的等差數(shù)列{an}的前6項(xiàng)和為60,a6a1a21的等比中項(xiàng).

(1)求數(shù)列{an}的通項(xiàng)公式.

(2)若數(shù)列{bn}滿(mǎn)足bn+1-bn=an(nN*),b1=3,求數(shù)列{}的前n項(xiàng)和Tn.

 

(1) an=2n+ (2) Tn=

【解析】(1)設(shè)等差數(shù)列{an}的公差為d(d0),

解得an=2n+3.

(2)bn+1-bn=an,

bn-bn-1=an-1(n2,nN*),

bn=(bn-bn-1)+(bn-1-bn-2)++(b2-b1)+b1

=an-1+an-2++a1+b1=n(n+2),

當(dāng)n=1時(shí),b1=3也適合上式,

bn=n(n+2)(nN*).

==(-),

Tn=(1-+-++-)

=(--)=.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十六第六章第二節(jié)練習(xí)卷(解析版) 題型:選擇題

如果一個(gè)鈍角三角形的邊長(zhǎng)是三個(gè)連續(xù)自然數(shù),那么最長(zhǎng)邊的長(zhǎng)度為(  )

(A)3 (B)4 (C)6 (D)7

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十二第五章第三節(jié)練習(xí)卷(解析版) 題型:填空題

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=1,Sn+1=2Sn+n+1(nN*),則數(shù)列{an}的通項(xiàng)公式an=   .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十九第六章第五節(jié)練習(xí)卷(解析版) 題型:填空題

設(shè)函數(shù)f(x)=(x>0),觀察:f1(x)=f(x)=,f2(x)=f(f1(x))=,f3(x)=f(f2(x))=,fn(x)=     .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十九第六章第五節(jié)練習(xí)卷(解析版) 題型:選擇題

如圖是2012年元宵節(jié)燈展中一款五角星燈連續(xù)旋轉(zhuǎn)閃爍所成的三個(gè)圖形,照此規(guī)律閃爍,下一個(gè)呈現(xiàn)出來(lái)的圖形是(  )

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十三第五章第四節(jié)練習(xí)卷(解析版) 題型:填空題

數(shù)列1,1+2,1+2+22,,1+2+22++2n-1,…的前n項(xiàng)和為    .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十三第五章第四節(jié)練習(xí)卷(解析版) 題型:選擇題

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,a2+a4=6,S5等于(  )

(A)10(B)12(C)15(D)30

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十七第六章第三節(jié)練習(xí)卷(解析版) 題型:選擇題

不等式2x-y0表示的平面區(qū)域是(  )

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十四選修4-2第一節(jié)練習(xí)卷(解析版) 題型:解答題

運(yùn)用旋轉(zhuǎn)矩陣,求直線2x+y-1=0繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)45°后所得的直線方程.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案