【題目】已知橢圓的左、右焦點(diǎn)分別為,長(zhǎng)軸長(zhǎng)為4,且過(guò)點(diǎn).

1)求橢圓C的方程;

2)過(guò)的直線l交橢圓C兩點(diǎn),過(guò)Ax軸的垂線交橢圓C與另一點(diǎn)QQ不與重合).設(shè)的外心為G,求證為定值.

【答案】12)證明見(jiàn)解析

【解析】

1)根據(jù)長(zhǎng)軸及橢圓過(guò)點(diǎn)即可求出;

2)由題意設(shè)直線,聯(lián)立橢圓方程可求,求出外接圓圓心,計(jì)算,化簡(jiǎn)即可證明為定值.

1)由題意知,

P點(diǎn)坐標(biāo)代入橢圓方程,解得

所以橢圓方程為.

2)由題意知,直線的斜率存在,且不為0,設(shè)直線

代入橢圓方程得.

設(shè),則,

所以的中點(diǎn)坐標(biāo)為,

所以.

因?yàn)?/span>G的外心,所以G是線段的垂直平分線與線段的垂直平分線的交點(diǎn),

的垂直平分線方程為

,得,即,所以,

所以,所以為定值,定值為4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在單位圓Ox2+y21上任取一點(diǎn)Pxy),圓Ox軸正向的交點(diǎn)是A,設(shè)將OA繞原點(diǎn)O旋轉(zhuǎn)到OP所成的角為θ,記x,y關(guān)于θ的表達(dá)式分別為xfθ),ygθ),則下列說(shuō)法正確的是(  )

A.xfθ)是偶函數(shù),ygθ)是奇函數(shù)

B.xfθ)在為增函數(shù),ygθ)在為減函數(shù)

C.fθ+gθ≥1對(duì)于恒成立

D.函數(shù)t2fθ+g2θ)的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn),直線,過(guò)動(dòng)點(diǎn)于點(diǎn)的平分線交軸于點(diǎn),且,記動(dòng)點(diǎn)的軌跡為曲線

1)求曲線的方程;

2)過(guò)點(diǎn)作兩條直線,分別交曲線兩點(diǎn)(異于點(diǎn)).當(dāng)直線的斜率之和為2時(shí),直線是否恒過(guò)定點(diǎn)?若是,求出定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C)的焦距為4,其短軸的兩個(gè)端點(diǎn)與長(zhǎng)軸的一個(gè)端點(diǎn)構(gòu)成正三角形.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)設(shè)F為橢圓C的左焦點(diǎn),T為直線上任意一點(diǎn),過(guò)FTF的垂線交橢圓C于點(diǎn)PQ.

i)證明:OT平分線段PQ(其中O為坐標(biāo)原點(diǎn));

ii)當(dāng)最小時(shí),求點(diǎn)T的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校開(kāi)展學(xué)生社會(huì)法治服務(wù)項(xiàng)目,共設(shè)置了文明交通,社區(qū)服務(wù),環(huán)保宣傳和中國(guó)傳統(tǒng)文化宣講四個(gè)項(xiàng)目,現(xiàn)有該校的甲、乙、丙、丁4名學(xué)生,每名學(xué)生必須且只能選擇1項(xiàng).

1)求恰有2個(gè)項(xiàng)目沒(méi)有被這4名學(xué)生選擇的概率;

2)求環(huán)保宣傳被這4名學(xué)生選擇的人數(shù)的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)有兩個(gè)不同的極值點(diǎn).

1)求的取值范圍.

2)求的極大值與極小值之和的取值范圍.

3)若,則是否有最小值?若有,求出最小值;若沒(méi)有,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為拋物線上的一點(diǎn),,為拋物線上異于點(diǎn)的兩點(diǎn),且直線的斜率與直線的斜率互為相反數(shù).

1)求直線的斜率;

2)設(shè)直線過(guò)點(diǎn)并交拋物線于,兩點(diǎn),且,直線軸交于點(diǎn),試探究的夾角是否為定值,若是則求出定值,若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A,B的坐標(biāo)分別是(0),(0),動(dòng)點(diǎn)Mx,y)滿足直線AMBM的斜率之積為﹣3,記M的軌跡為曲線E

1)求曲線E的方程;

2)直線ykx+m與曲線E相交于P,Q兩點(diǎn),若曲線E上存在點(diǎn)R,使得四邊形OPRQ為平行四邊形(其中O為坐標(biāo)原點(diǎn)),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是以為直徑的圓上一點(diǎn),,等腰梯形所在的平面垂直于⊙所在的平面,且.

1)求所成的角;

2)若異面直線所成的角為,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案