【題目】某學(xué)校高三年級(jí)有學(xué)生1000名,經(jīng)調(diào)查,其中750名同學(xué)經(jīng)常參加體育鍛煉(稱為A類同學(xué)),另外250名同學(xué)不經(jīng)常參加體育鍛煉(稱為B類同學(xué)),現(xiàn)用分層抽樣方法(按A類、B類分兩層)從該年級(jí)的學(xué)生中抽查100名同學(xué).如果以身高達(dá)到165厘米作為達(dá)標(biāo)的標(biāo)準(zhǔn),對(duì)抽取的100名學(xué)生進(jìn)行統(tǒng)計(jì),得到以下列聯(lián)表:

身高達(dá)標(biāo)

身高不達(dá)標(biāo)

總計(jì)

積極參加體育鍛煉

40

不積極參加體育鍛煉

15

總計(jì)

100

(1)完成上表;

(2)能否有犯錯(cuò)率不超過0.05的前提下認(rèn)為體育鍛煉與身高達(dá)標(biāo)有關(guān)系?(的觀測(cè)值精確到0.001).

參考公式:

參考數(shù)據(jù):

P(K2≥k)

0.25

0.15

0.10

0.05

0.025

0.010

0.001

k

1.323

2.072

2.706

3.841

5.024

6.635

10.828

【答案】(1)

身高達(dá)標(biāo)

身高不達(dá)標(biāo)

總計(jì)

積極參加體育鍛煉

40

35

75

不積極參加體育鍛煉

10

15

25

總計(jì)

50

50

100

(2) 不能在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為體育鍛煉與身高達(dá)標(biāo)有關(guān)系.

【解析】

(1)由分層抽樣的計(jì)算方法可求得積極參加鍛煉與不積極參加鍛煉的人數(shù),填入表格中,

根據(jù)表格中的總計(jì)及各項(xiàng)值求出其它值即可;

(2)由公式計(jì)算出,與參考數(shù)據(jù)表格中3.841作比較,若小于3.841則不可以,若大于3.841則可以.

Ⅰ)填寫列聯(lián)表如下:

身高達(dá)標(biāo)

身高不達(dá)標(biāo)

總計(jì)

積極參加體育鍛煉

40

35

75

不積極參加體育鍛煉

10

15

25

總計(jì)

50

50

100

K2的觀測(cè)值為≈1.3333.841.

所以不能在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為體育鍛煉與身高達(dá)標(biāo)有關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若,則實(shí)數(shù)的取值范圍為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有次水下考古活動(dòng)中,潛水員需潛入水深為30米的水底進(jìn)行作業(yè),其用氧量包含以下三個(gè)方面:①下潛時(shí),平均速度為每分鐘米,每分鐘的用氧量為升;②水底作業(yè)需要10分鐘,每分鐘的用氧量為0.3升;③返回水面時(shí),速度為每分鐘米,每分鐘用氧量為0.2升;設(shè)潛水員在此次考古活動(dòng)中的總用氧量為升;

(1)將表示為的函數(shù);

(2)若,求總用氧量的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市疾控中心流感監(jiān)測(cè)結(jié)果顯示,自月起,該市流感活動(dòng)一度出現(xiàn)上升趨勢(shì),尤其是月以來(lái),呈現(xiàn)快速增長(zhǎng)態(tài)勢(shì),截止目前流感病毒活動(dòng)度仍處于較高水平,為了預(yù)防感冒快速擴(kuò)散,某校醫(yī)務(wù)室采取積極方式,對(duì)感染者進(jìn)行短暫隔離直到康復(fù)假設(shè)某班級(jí)已知位同學(xué)中有位同學(xué)被感染,需要通過化驗(yàn)血液來(lái)確定感染的同學(xué),血液化驗(yàn)結(jié)果呈陽(yáng)性即為感染,呈陰性即未被感染.下面是兩種化驗(yàn)方法: 方案甲:逐個(gè)化驗(yàn),直到能確定感染同學(xué)為止;

方案乙:先任取個(gè)同學(xué),將它們的血液混在一起化驗(yàn)若結(jié)果呈陽(yáng)性則表明感染同學(xué)為這位中的位,后再逐個(gè)化驗(yàn),直到能確定感染同學(xué)為止;若結(jié)果呈陰性則在另外位同學(xué)中逐個(gè)檢測(cè);

(1)求依方案甲所需化驗(yàn)次數(shù)等于方案乙所需化驗(yàn)次數(shù)的概率;

(2)表示依方案甲所需化驗(yàn)次數(shù),表示依方案乙所需化驗(yàn)次數(shù),假設(shè)每次化驗(yàn)的費(fèi)用都相同,請(qǐng)從經(jīng)濟(jì)角度考慮那種化驗(yàn)方案最佳.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】a,b為正數(shù),給出下列命題:
①若a2﹣b2=1,則a﹣b<1;
②若 =1,則a﹣b<1;
③ea﹣eb=1,則a﹣b<1;
④若lna﹣lnb=1,則a﹣b<1.
期中真命題的有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知公差不為0的等差數(shù)列{an}中,a1=2,且a2+1,a4+1,a8+1成等比數(shù)列.
(1)求數(shù)列{an}通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn= ,求適合方程b1b2+b2b3+…+bnbn+1= 的正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x+ +3,x∈N* , 在x=5時(shí)取到最小值,則實(shí)數(shù)a的所有取值的集合為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=ax+bx﹣cx , 其中c>a>0,c>b>0.若a,b,c是△ABC的三條邊長(zhǎng),則下列結(jié)論中正確的是( )
①對(duì)一切x∈(﹣∞,1)都有f(x)>0;
②存在x∈R+ , 使ax , bx , cx不能構(gòu)成一個(gè)三角形的三條邊長(zhǎng);
③若△ABC為鈍角三角形,則存在x∈(1,2),使f(x)=0.
A.①②
B.①③
C.②③
D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是公比為正數(shù)的等比數(shù)列,,

(1)的通項(xiàng)公式;

(2)設(shè)是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列的前項(xiàng)和

【答案】(1)(2)

【解析】

(1)根據(jù)等比數(shù)列的通項(xiàng)公式得到:,解得二次方程可得到(舍去),進(jìn)而得到數(shù)列的通項(xiàng);(2)已知數(shù)列的類型是等差數(shù)列與等比數(shù)列求和的問題,根據(jù)等差等比數(shù)列求和公式得到結(jié)果即可.

:(1)設(shè)為等比數(shù)列的公比,則由,:

,解得:(舍去)

所以的通項(xiàng)公式為

(2) 由 等 差 數(shù) 列 的 通 項(xiàng) 公 式 得 到:

由 等 差 數(shù) 列求 和 公 式 和 等 比 數(shù) 列 前 n 項(xiàng) 和 公 式 得 到

【點(diǎn)睛】

這個(gè)題目考查的是數(shù)列通項(xiàng)公式的求法及數(shù)列求和的常用方法;數(shù)列通項(xiàng)的求法中有常見的已知的關(guān)系,求表達(dá)式,一般是寫出做差得通項(xiàng),但是這種方法需要檢驗(yàn)n=1時(shí)通項(xiàng)公式是否適用;數(shù)列求和常用法有:錯(cuò)位相減,裂項(xiàng)求和,分組求和等。

型】解答
結(jié)束】
18

【題目】設(shè)a≠b,解關(guān)于x的不等式a2xb2(1-x)≥[axb(1-x)]2

查看答案和解析>>

同步練習(xí)冊(cè)答案