如圖,已知平面內(nèi)一動(dòng)點(diǎn)到兩個(gè)定點(diǎn)、的距離之和為,線段的長(zhǎng)為.

(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)過點(diǎn)作直線與軌跡交于、兩點(diǎn),且點(diǎn)在線段的上方,
線段的垂直平分線為.
①求的面積的最大值;
②軌跡上是否存在除、外的兩點(diǎn)關(guān)于直線對(duì)稱,請(qǐng)說明理由.

(1)參考解析;(2)①;②參考解析

解析試題分析:(1)由于c的大小沒確定,所以點(diǎn)A的軌跡,根據(jù)c的大小有三種情況.
(2)①由可得點(diǎn)A的軌跡方程為橢圓,求的面積的最大值即求出點(diǎn)A到直線距離的最大值.即點(diǎn)A在橢圓的上頂點(diǎn)上即可.本小題通過建立三角函數(shù)同樣可以求得三角形面積最大時(shí)的情況.
②當(dāng)時(shí),顯然存在除外的兩點(diǎn)、關(guān)于直線對(duì)稱.當(dāng)直線AC不垂直于時(shí),不存在除、外的兩點(diǎn)關(guān)于直線對(duì)稱.通過假設(shè)存在,利用點(diǎn)差法即可得到,.由于H,M分別是兩條弦的中點(diǎn),并且都被直線m平分.所以.由.所以不存在這樣的直線.
試題解析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d1/4/mhr1o.png" style="vertical-align:middle;" />,軌跡是以、為焦點(diǎn)的橢圓,3分
(2)以線段的中點(diǎn)為坐標(biāo)原點(diǎn),以所在直線為軸建立平面直角坐標(biāo)系,
可得軌跡的方程為7分
①解法1:設(shè)表示點(diǎn)到線段的距離
,8分
要使的面積有最大值,只要有最大值
當(dāng)點(diǎn)與橢圓的上頂點(diǎn)重合時(shí),
的最大值為10分
解法2:在橢圓中,設(shè),記
點(diǎn)在橢圓上,由橢圓的定義得:

中,由余弦定理得:
配方,得:
從而

8分
根據(jù)橢圓的對(duì)稱性,當(dāng)最大時(shí),最大
當(dāng)點(diǎn)與橢圓的上頂點(diǎn)重合時(shí),
最大值為10分
②結(jié)論:當(dāng)時(shí),顯然存在除、外的兩點(diǎn)關(guān)于直線對(duì)稱11分
下證當(dāng)不垂直時(shí),不存在除、外的兩點(diǎn)關(guān)于直線對(duì)稱12分
證法1:假設(shè)存在這樣的兩個(gè)不同的點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知、為橢圓的左右焦點(diǎn),點(diǎn)為其上一點(diǎn),且有
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過的直線與橢圓交于、兩點(diǎn),過平行的直線與橢圓交于、兩點(diǎn),求四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線的方程為,過原點(diǎn)作斜率為的直線和曲線相交,另一個(gè)交點(diǎn)記為,過作斜率為的直線與曲線相交,另一個(gè)交點(diǎn)記為,過作斜率為的直線與曲線相交,另一個(gè)交點(diǎn)記為,如此下去,一般地,過點(diǎn)作斜率為的直線與曲線相交,另一個(gè)交點(diǎn)記為,設(shè)點(diǎn)).
(1)指出,并求的關(guān)系式();
(2)求)的通項(xiàng)公式,并指出點(diǎn)列,向哪一點(diǎn)無限接近?說明理由;
(3)令,數(shù)列的前項(xiàng)和為,試比較的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)拋物線:的準(zhǔn)線與軸交于點(diǎn),焦點(diǎn)為;橢圓為焦點(diǎn),離心率.設(shè)的一個(gè)交點(diǎn).

(1)求橢圓的方程.
(2)直線的右焦點(diǎn),交兩點(diǎn),且等于的周長(zhǎng),求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分15分)
已知橢圓C:+=1的離心率為,左焦點(diǎn)為F(-1,0),
(1) 設(shè)A,B分別為橢圓的左、右頂點(diǎn),過點(diǎn)F且斜率為k的直線L與橢圓C交于M,N兩點(diǎn),若,求直線L的方程;
(2)橢圓C上是否存在三點(diǎn)PE,G,使得SOPESOPGSOEG=?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓過點(diǎn),且離心率為.斜率為的直線與橢圓交于AB兩點(diǎn),以為底邊作等腰三角形,頂點(diǎn)為.
(1)求橢圓的方程;
(2)求△的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓過點(diǎn),且它的離心率.
 
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)與圓相切的直線交橢圓于兩點(diǎn),若橢圓上一點(diǎn)滿足,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓短半軸長(zhǎng)為半徑的圓與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過右焦點(diǎn)作斜率為的直線交曲線、兩點(diǎn),且,又點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為點(diǎn),試問、、、四點(diǎn)是否共圓?若共圓,求出圓心坐標(biāo)和半徑;若不共圓,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的由頂點(diǎn)為A,右焦點(diǎn)為F,直線與x軸交于點(diǎn)B且與直線交于點(diǎn)C,點(diǎn)O為坐標(biāo)原點(diǎn),,過點(diǎn)F的直線與橢圓交于不同的兩點(diǎn)M,N.

(1)求橢圓的方程;
(2)求的面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案