已知角θ的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊為x軸的正半軸.若P(2,y)是角θ終邊上一點(diǎn),且sinθ=-
1
2
,則y=( 。
A、-
2
3
3
B、
2
3
3
C、±
2
3
3
D、±
3
2
2
考點(diǎn):任意角的三角函數(shù)的定義
專題:三角函數(shù)的求值
分析:由任意角的三角函數(shù)的定義可得 sinθ=
y
4+y2
=-
1
2
,由此解得 y的值.
解答: 解:由任意角的三角函數(shù)的定義可得 sinθ=
y
r
=
y
4+y2
=-
1
2
,解得 y=-
2
3
3

故選:A.
點(diǎn)評:本題主要考查任意角的三角函數(shù)的定義,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

大前提:對任意正整數(shù)a,b,a+b≥2
ab
;小前提:x+
1
x
≥2
x
1
x
,結(jié)論;所以x+
1
x
≥2,以上推理過程中的錯誤為( 。
A、大前提B、小前提
C、結(jié)論D、無錯誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8名學(xué)生和2位老師站成一排合影,2位老師不相鄰且不站在兩端的排法種數(shù)為( 。
A、A
 
8
8
A
 
2
9
B、A
 
8
8
A
 
2
8
C、A
 
8
10
A
 
2
8
D、A
 
8
8
A
 
2
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l,m,平面α,β,且l⊥α,m?β,則( 。
A、若平面α不平行于平面β,則l不可能垂直于m
B、若平面α平行于平面β,則l不可能垂直于m
C、若平面α不垂直于平面β,則l不可能平行于m
D、若平面α垂直于平面β,則l不可能平行于m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=0.30.2,b=0.20.3,c=0.20.2,則a,b,c的大小關(guān)系是( 。
A、a>b>c
B、a>c>b
C、c>b>a
D、c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)是定義在R上的以3為周期的奇函數(shù)且f(2)=0在區(qū)間(0,6)內(nèi)f(x)=0解個數(shù)的最小值是(  )
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=(x+1)3-3x2-(2a+3)x+a在(0,1)內(nèi)有極小值,則實(shí)數(shù)a的取值范圍是( 。
A、(0,3)
B、(-∞,3)
C、(0,+∞)
D、(0,
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}是等差數(shù)列,a1+a2=2,a3+a4=4,則a5+a6=( 。
A、16B、12C、8D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,下頂點(diǎn)為A,離心率e=
1
2
,若直線l:x-
3
y-3=0過點(diǎn)A.
(Ⅰ)求橢圓C的方程;
(Ⅱ)在(Ⅰ)的條件下,過右焦點(diǎn)F2作斜率為k的直線l′與橢圓C交于M、N兩點(diǎn),在x軸上是否存在點(diǎn)p(m,0),使得以PM,PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍;如果不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案