已知O是△ABC所在平面內(nèi)一點,且2
OA
+
OB
+
OC
=0
,則△ABO與△ABC的面積之比為( 。
A、
1
2
B、
1
3
C、
1
4
D、
1
6
考點:向量加減混合運算及其幾何意義
專題:平面向量及應用
分析:由2
OA
+
OB
+
OC
=0
,可得2
OA
+
OB
=-
OC
.如圖所示,以
OB
、2
OA
所在的線段OB、OE為鄰邊作平行四邊形OBFE,對角線OF交AB與點D.利用向量的平行四邊形法則和平行四邊形的性質(zhì)可得
OD
DF
=
1
2
,進而得到
OD
CD
=
1
4
,即可得出答案.
解答: 解:由2
OA
+
OB
+
OC
=0
,可得2
OA
+
OB
=-
OC

如圖所示,
OB
、2
OA
所在的線段OB、OE為鄰邊作平行四邊形OBFE,對角線OF交AB與點D.
OD
DF
=
OA
BF
=
1
2
,
OD
CO
=
1
3
,∴
OD
CD
=
1
4

∴△ABO與△ABC的面積之比=
1
4

故選:C.
點評:本題考查了向量的平行四邊形法則和平行四邊形的性質(zhì)、平行線分線段成比例定理、三角形的面積計算公式等基礎知識與基本技能方法,屬于難題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1(-c,0)、F2(c,0),過左焦點F1的弦AB的端點為A(m,1)、B(n,-3),△ABF2的內(nèi)切圓半徑為1,則橢圓離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知變量x,y滿足約束條件
x+y≥2
x-y≤2
0≤y≤3
,若目標函數(shù)z=y+ax僅在點(5,3)處取得最小值,則實數(shù)a的取值范圍為(  )
A、(-∞,-1)
B、(0,+∞)
C、(
3
7
,+∞)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

任取實數(shù)a、b∈[-1,1],則a、b滿足|a-2b|≤2的概率為( 。
A、
1
8
B、
1
4
C、
3
4
D、
7
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,空間四邊形ABCD中,E,F(xiàn)分別為AB,AD的中點,G,H分別在BC,CD上,且BG:GC=DH:HC=1:2.下列說法不正確的是( 。
A、E、F、G、H四點共面
B、GE與HF的交點在直線AC上
C、EF∥面DBC
D、GE∥面ADC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設p:“a>3”q:“f(x)=x3-ax2+1在(0,2)上有唯一零點”,則p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(cosx,sinx)
,向量
b
=(cosx,-sinx)
,f(x)=
a
b

(Ⅰ)求函數(shù)g(x)=f(x)+sin2x的最小正周期和對稱軸方程;
(Ⅱ)若x是第一象限角且3f(x)=-2f′(x),求tan(x+
π
4
)
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點F為橢圓C:
x2
2
+y2
=1的左焦點,點P為橢圓C上任意一點,點Q的坐標為(4,3),則|PQ|+|PF|取最大值時,點P的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,P為不等式
y≤1
x+y-2≥0
x-y-1≤0
所表示的平面區(qū)域上一動點,則直線OP斜率的最大值為(  )
A、2
B、1
C、
1
2
D、
1
3

查看答案和解析>>

同步練習冊答案