【題目】如圖所示,某鐵制零件由一個正四棱柱和一個球組成,已知正四棱柱底面邊長與球的直徑均為1cm,正四棱柱的高為2cm.現(xiàn)有這種零件一盒共50kg,取鐵的密度為.

1)估計有多少個這樣的零件;

2)如果要給這盒零件的每個零件表面涂上一種特殊的材料,則需要能涂多少平方厘米的材料(球與棱柱接口處的面積不計,結(jié)果精確到)?

【答案】(1)個(2)需要能涂的材料

【解析】

1)先求出每個零件的體積,然后求出每個零件的質(zhì)量,再求出零件的個數(shù)即可;

2)先求出每個零件的表面積,從而求出零件的表面積之和即可得解.

解:(1)每個零件的體積為

因此每個零件的質(zhì)量為

.

因此可估計出零件的個數(shù)為

.

2)每個零件的表面積為

,

因此零件的表面積之和約為

.

即需要能涂的材料.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域為;

1)求實數(shù)的取值范圍;

2)設(shè)實數(shù)的最大值,若實數(shù),滿足,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在地面上同一地點觀測遠(yuǎn)方勻速垂直上升的熱氣球,在上午10點整熱氣球的仰角是,到上午10點20分的仰角變成.請利用下表判斷到上午11點整時,熱氣球的仰角最接近哪個度數(shù)( )

0.5

0.559

0.629

0.643

0.656

0.669

0.682

0.695

0.707

0.866

0.829

0.777

0.766

0.755

0.743

0.731

0.719

0.707

0.577

0.675

0.810

0.839

0.869

0.900

0.933

0.966

1.0

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】全世界越來越關(guān)注環(huán)境保護(hù)問題,某監(jiān)測站點于2018年1月某日起連續(xù)天監(jiān)測空氣質(zhì)量指數(shù)(),數(shù)據(jù)統(tǒng)計如下:

空氣質(zhì)量指數(shù)()

空氣質(zhì)量等級

空氣優(yōu)

空氣良

輕度污染

中度污染

重度污染

天數(shù)

20

40

10

5

(1)根據(jù)所給統(tǒng)計表和頻率分布直方圖中的信息求出,的值,并完成頻率分布直方圖;

(2)由頻率分布直方圖,求該組數(shù)據(jù)的眾數(shù)和中位數(shù);

(3)在空氣質(zhì)量指數(shù)分別屬于的監(jiān)測數(shù)據(jù)中,用分層抽樣的方法抽取天,再從中任意選取天,求事件“兩天空氣都為良”發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在(0,+∞)上的函數(shù)f(x)的導(dǎo)數(shù)滿足x2<1,則下列不等式中一定成立的是( 。

A.f()+1<f()<f()﹣1B.f()+1<f()<f()﹣1

C.f()﹣1<f()<f()+1D.f()﹣1<f()<f()+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某小區(qū)2017年1月至2018年1月當(dāng)月在售二手房均價(單位:萬元/平方米)的散點圖.(圖中月份代碼1—13分別對應(yīng)2017年1月—2018年1月)

由散點圖選擇兩個模型進(jìn)行擬合,經(jīng)過數(shù)據(jù)處理得到兩個回歸方程分別為,并得到以下一些統(tǒng)計量的值:

殘差平方和

0.000591

0.000164

總偏差平方和

0.006050

(1)請利用相關(guān)指數(shù)判斷哪個模型的擬合效果更好;

(2)某位購房者擬于2018年6月份購買這個小區(qū)平方米的二手房(欲

購房為其家庭首套房).若購房時該小區(qū)所有住房的房產(chǎn)證均已滿2年但未滿5年,請你利用(1)中擬合效果更好的模型估算該購房者應(yīng)支付的購房金額.(購房金額=房款+稅費;房屋均價精確到0.001萬元/平方米)

附注:根據(jù)有關(guān)規(guī)定,二手房交易需要繳納若干項稅費,稅費是按房屋的計稅價格進(jìn)行征收.(計稅價格=房款),征收方式見下表:

契稅

(買方繳納)

首套面積90平方米以內(nèi)(含90平方米)為1%;首套面積90平方米以上且144平方米以內(nèi)(含144平方米)為1.5%;面積144平方米以上或非首套為3%

增值稅

(賣方繳納)

房產(chǎn)證未滿2年或滿2年且面積在144平方米以上(不含144平方米)為5.6%;其他情況免征

個人所得稅

(賣方繳納)

首套面積144平方米以內(nèi)(含144平方米)為1%;面積144平方米以上或非首套均為1.5%;房產(chǎn)證滿5年且是家庭唯一住房的免征

參考數(shù)據(jù):,,,,,. 參考公式:相關(guān)指數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=alnx﹣ex(a∈R).其中e是自然對數(shù)的底數(shù).

(1)討論函數(shù)f(x)的單調(diào)性并求極值;

(2)令函數(shù)g(x)=f(x)+ex,若x∈[1,+∞)時,g(x)≥0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(12分)

煉鋼是一個氧化降碳的過程,由于鋼水含碳量的多少直接影響冶煉時間的長短,因此必須掌握鋼水含碳量和冶煉時間的關(guān)系.現(xiàn)已測得爐料熔化完畢時鋼水的含碳量x與冶煉時間y(從爐料熔化完畢到出鋼的時間)的一組數(shù)據(jù),如下表所示:

(1)據(jù)統(tǒng)計表明,之間具有線性相關(guān)關(guān)系,請用相關(guān)系數(shù)r加以說明( ,則認(rèn)為yx有較強(qiáng)的線性相關(guān)關(guān)系,否則認(rèn)為沒有較強(qiáng)的線性相關(guān)關(guān)系,r精確到0.001);

(2)建立y關(guān)于x的回歸方程(回歸系數(shù)的結(jié)果精確到0.01);

(3)根據(jù)(2)中的結(jié)論,預(yù)測鋼水含碳量為1600.01%的冶煉時間.

參考公式:回歸方程中斜率和截距的最小二乘估計分別為,

,相關(guān)系數(shù)

參考數(shù)據(jù):,

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】實數(shù)m取什么值時,復(fù)平面內(nèi)表示復(fù)數(shù)z=(m2-8m+15)+(m2-5m-14)i的點.

(1)位于第四象限?

(2)位于第一、三象限?

(3)位于直線yx上?

查看答案和解析>>

同步練習(xí)冊答案