【題目】已知是定義在上且以3為周期的奇函數(shù),當(dāng)時, ,則函數(shù)在區(qū)間上的零點(diǎn)個數(shù)是( )
A. 3 B. 5 C. 7 D. 9
【答案】C
【解析】∵當(dāng)x∈(0,1.5)時f(x)=ln(x2-x+1),令f(x)=0,則x2-x+1=1,
解得x=1,又∵函數(shù)f(x)是定義域?yàn)?/span>R的奇函數(shù),
∴在區(qū)間∈[-1.5,1.5]上,f(-1)=-f(1)=0,f(0)=0.
∴f(1.5)=f(-1.5+3)=f(-1.5)=-f(1.5),
∴f(-1)=f(1)=f(0)=f(1.5)=f(-1.5)=0
又∵函數(shù)f(x)是周期為3的周期函數(shù),
則方程f(x)=0在區(qū)間[0,6]上的解有0,1,1.5,2,3,4,4.5,5,6,
共9個.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x2ex
(1)求f(x)的單調(diào)區(qū)間;
(2)若x∈[﹣2,2]時,不等式f(x)<m恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)是(﹣∞,0)∪(0,+∞)上的偶函數(shù),x>0時f(x)=x﹣ ,求x<0時f(x)的表達(dá)式,判斷f(x)在(﹣∞,0)上的單調(diào)性,并用定義給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集U=R,已知集合A={x||x﹣a|≤1},B={x|(4﹣x)(x﹣1)≤0}.
(1)若a=4,求A∪B;
(2)若A∩B=A,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax3﹣x2+4x+3,若在區(qū)間[﹣2,1]上,f(x)≥0恒成立,則a的取值范圍是( )
A.[﹣6,﹣2]
B.
C.[﹣5,﹣3]
D.[﹣4,﹣3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班級體育課舉行了一次“投籃比賽”活動,為了了解本次投籃比賽學(xué)生總體情況,從中抽取了甲乙兩個小組樣本分?jǐn)?shù)的莖葉圖如圖所示.
(1)分別求出甲乙兩個小組成績的平均數(shù)與方差,并判斷哪一個小組的成績更穩(wěn)定:
(2)從甲組高于70分的同學(xué)中,任意抽取2名同學(xué),求恰好有一名同學(xué)的得分在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著我國經(jīng)濟(jì)的迅速發(fā)展,居民的儲蓄存款逐年增長.設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲蓄存款(年底余額)如表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 |
時間代號x | 1 | 2 | 3 | 4 | 5 |
儲蓄存款y (千億元) | 5 | 6 | 7 | 8 | 10 |
附:回歸方程 中, = .
(1)求y關(guān)于x的線性回歸方程 ;
(2)用所求回歸方程預(yù)測該地區(qū)今年的人民幣儲蓄存款.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)y1=loga(3x+1),y2=loga(﹣3x),其中a>0且a≠1.
(1)若y1=y2 , 求x的值;
(2)若y1>y2 , 求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若是函數(shù)的極值點(diǎn),求曲線在點(diǎn)處的切線方程;
(2)若函數(shù)在上為單調(diào)增函數(shù),求的取值范圍;
(3)設(shè)為正實(shí)數(shù),且,求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com