(滿分12分)如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點,點,
且點軸上動點,過點作線段
垂線交軸于點,在直線上取點,使。
(1)求動點的軌跡的方程;
(2)點是直線上的一個動點,
過點作軌跡的兩條切線切點分別為,
求證:
(1)設(shè)動點,,
直線的方程為
    ,的軌跡的方程是
(2)設(shè),,

同理,是方程的兩個根,
 ,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(2001高考江西、山西、天津)設(shè)坐標(biāo)原點為O,拋物線y2=2x與過焦點的直線交于A、B兩點,則等于(   )
A.B.-C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

條件:(1)截軸弦長為2.(2)被軸分成兩段圓弧,其弧長之比為3:1在滿足(1)(2)的所有圓中,求圓心到直線距離最小時圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題





查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(原創(chuàng)題)
已知是曲線上一點,是該曲線的兩個焦點,若內(nèi)角平分線的交點到三邊上的距離為1,,則的值為   
A.B.C.-D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)已知兩點且點P使成等差數(shù)列.(1)若P點的軌跡曲線為C,求曲線C的方程;
(2)從定點出發(fā)向曲線C引兩條切線,求兩切線方程和切點連線的直線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若直線與圓沒有公共點,則以(m,n)為點P的坐標(biāo),過點P的一條直線與橢圓的公共點有_________個。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線和雙曲線都經(jīng)過點,它們在軸上有共同焦點,拋物線的頂點為坐標(biāo)原點,則雙曲線的標(biāo)準(zhǔn)方程是                .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(江蘇省泰興市2007—2008學(xué)年第一學(xué)期高三調(diào)研)已知過點A(0,1),且方向向量為,相交于M、N兩點.
(1)求實數(shù)的取值范圍; 
(2)求證:;
(3)若O為坐標(biāo)原點,且.

查看答案和解析>>

同步練習(xí)冊答案