【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E、F、G分別是棱A1B1、BB1、B1C1的中點,則下列結論中:
①FG⊥BD
②B1D⊥面EFG
③面EFG∥面ACC1A1
④EF∥面CDD1C1
正確結論的序號是(

A.①和②
B.②和④
C.①和③
D.③和④

【答案】B
【解析】解:如圖連接A1C1、A1B、BC1、BD、B1D,因為E、F、G分別是棱A1B1、BB1、B1C1的中點
①因為FG∥BC1 , △BDC1是正三角形,所以∠C1BD=60°,因為FG∥BC1 , 所以異面直線FG與BD所成的角為60°,
FG⊥BD不正確,所以①不正確.
②因為平面A1C1B∥平面EFG,并且B1D⊥平面A1C1B,所以B1D⊥面EFG,所以②正確.
③因為EF和FG和平面面ACC1A1不平行,所以③錯誤.
④EF∥平面CDD1C1內(nèi)的D1C,所以EF∥面CDD1C1 . 所以④正確.
故選B.

【考點精析】本題主要考查了命題的真假判斷與應用和空間中直線與平面之間的位置關系的相關知識點,需要掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系;直線在平面內(nèi)—有無數(shù)個公共點;直線與平面相交—有且只有一個公共點;直線在平面平行—沒有公共點才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中,正確的是:( )

A. 命題“若,則”的否命題為“若,則

B. 命題“存在,使得”的否定是:“任意,都有

C. 若命題“非”與命題“”都是真命題,那么命題一定是真命題

D. 命題“若,則”的逆命題是真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知cosα= ,cos(α+β)=﹣ ,且α,β∈(0, ),則cos(α﹣β)的值等于(
A.﹣
B.
C.﹣
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左,右焦點分別為.點在橢圓上,直線過坐標原點,若, .

(1)求橢圓的方程;

(2) 設橢圓在點處的切線記為直線,點上的射影分別為,過的垂線交軸于點,試問是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知實數(shù)滿足,實數(shù)滿足,則的最小值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知點A(2,0),B(0,2),C(cosα,sinα).
(1)若 ,且α∈(0,π),求角α的值;
(2)若 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在銳角△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且2asinB= b.
(Ⅰ)求角A的大;
(Ⅱ)若a=6,b+c=8,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐P﹣ABCD的四條側棱長相等,底面ABCD為正方形,M為PB的中點,求證:
(Ⅰ)PD∥平面ACM;
(Ⅱ)PO⊥平面ABCD;
(Ⅲ)若PA=AB,求異面直線PD與CM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)y=sinx的圖象上所有點的橫坐標縮小到原來的 (縱坐標不變),再將所得到的圖象上所有點向左平移 個單位,所得函數(shù)圖象的解析式為(
A.y=sin(2x﹣
B.y=sin(2x+
C.y=sin( x+
D.y=sin( x+

查看答案和解析>>

同步練習冊答案