已知O點(diǎn)為坐標(biāo)原點(diǎn),向量
OA
=(3,-4),
OB
=(6,-3),
OC
=(5-m,-3-m).
(1)若A,B,C三點(diǎn)共線,求實(shí)數(shù)m的值;
(2)若△ABC為直角三角形,且A為直角,求實(shí)數(shù)m的值.
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:利用的坐標(biāo),結(jié)合A,B,C三點(diǎn)共線可求得a,b的關(guān)系,利用基本不等式即可求得答案.
解答: 解:(1)∵向量
OA
=(3,-4),
OB
=(6,-3),
OC
=(5-m,-3-m).
AB
=(3,1),
AC
=(2-m,1-m),
∵A,B,C三點(diǎn)共線,
∴3(1-m)=2-m,
解得m=
1
2
;                                             
(2)由題意知:
AB
AC
,
∴3(2-m)+(1-m)=0,
解得m=
7
4
點(diǎn)評(píng):本題考查了向量平行的坐標(biāo)運(yùn)算以及向量垂直的坐標(biāo)運(yùn)算;如果兩個(gè)向量垂直,那么它們的數(shù)量積為0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2+y2=16,直線l:3x+4y=25.
(1)求圓C的圓心到直線l的距離;
(2)求圓C上任意一點(diǎn)A到直線l的距離小于3的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠在甲、乙兩地的兩個(gè)分工廠各生產(chǎn)某種機(jī)器12臺(tái)和6臺(tái),現(xiàn)銷售給A地10臺(tái),B地8臺(tái).已知從甲地調(diào)運(yùn)1臺(tái)至A地、B地的費(fèi)用分別為400元和800元,從乙地調(diào)運(yùn)1臺(tái)至A地、B地的費(fèi)用分別為300元和500元.
(1)設(shè)從乙地調(diào)運(yùn)x臺(tái)至A地,求總費(fèi)用y關(guān)于x的函數(shù)關(guān)系式并求定義域;
(2)若總費(fèi)用不超過(guò)9000元,則共有幾種調(diào)運(yùn)方法?
(3)求出總費(fèi)用最低的調(diào)運(yùn)方案及最低費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+bx2+cx在點(diǎn)(1,f(1))處的切線方程為3x+y+2=0.
(Ⅰ)求b,c的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
3
sinωx•cosωx+sin2ωx+k,(ω>0).
(1)若f(x)圖象中相鄰兩條對(duì)稱軸間的距離不小于
π
2
,求ω的取值范圍;
(2)若f(x)的最小正周期為π,且當(dāng)x∈[-
π
6
,
π
6
]時(shí),f(x)的最大值是
1
2
,求f(x)最小值,并說(shuō)明如何由y=sin2x的圖象變換得到y(tǒng)=f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖為一個(gè)纜車示意圖,該纜車半徑為4.8m,圓上最低點(diǎn)與地面距離為0.8m,60秒轉(zhuǎn)動(dòng)一圈,圖中OA與地面垂直,以O(shè)A為始邊,逆時(shí)針轉(zhuǎn)到θ角到OB,設(shè)B點(diǎn)與地面距離是h.
(1)求h與θ間的函數(shù)關(guān)系式;
(2)設(shè)從OA開(kāi)始轉(zhuǎn)動(dòng),經(jīng)過(guò)t秒后到達(dá)OB,求h與t之間的函數(shù)關(guān)系式,并求纜車到達(dá)最高點(diǎn)時(shí)用的時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題P:?x∈R,使得x2-2x+m<0,命題q:方程
x2
m+1
+
y2
2-m
=1表示雙曲線.
(1)寫出命題p的否定形式;
(2)若命題p為假,命題q為真,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

與圓x2+y2-x+2y=0關(guān)于直線x-y+1=0對(duì)稱的圓的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知0<a<1,x>y>1,有下列不等式:①ax>ay;②xa>ya;③logax>logay;③logxa>logya.其中正確的有
 
.(填序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案