已知c>0,設(shè)p:函數(shù)y=cx在R上單調(diào)遞減;q:函數(shù)g(x)=lg(2cx2+2x+1)的值域?yàn)镽,如果“p且q”為假命題,“p或q為真命題,則c的取值范圍是( 。
A.(
1
2
,1)
B.(
1
2
,+∞)
C.(0,
1
2
]∪[1,+∞)
D.(-∞,+∞)
∵如果P∧Q為假命題,P∨Q為真命題,
∴p、q中一個(gè)為真命題、一個(gè)為假命題
①若p為真命題,q為假命題
則0<c<1且 c>
1
2

1
2
<c<1
②若p為假命題,q為真命題
則c>1且c≤
1
2
,
這樣的c不存在
綜上,
1
2
<c<1
故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知c>0,設(shè)P:函數(shù)y=cx在R上單調(diào)遞減,Q:不等式x+|x-2c|>1的解集為R.如果P和Q有且僅有一個(gè)正確,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知c>0,設(shè)p:函數(shù)y=cx在R上單調(diào)遞減;q:函數(shù)g(x)=lg(2cx2+2x+1)的值域?yàn)镽,如果“p且q”為假命題,“p或q為真命題,則c的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知c>0,設(shè)P:函數(shù)y=cx在R上單調(diào)遞減,Q:不等式x+|x-2c|>1對任意實(shí)數(shù)x恒成立,若“P或Q”為真,“P且Q”為假,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知c>0,設(shè)P:函數(shù)y=cx在R上單調(diào)遞減,Q:當(dāng)x∈[
1
2
,2]時(shí),不等式5c<x+
1
x
有解,若“P或Q”為真,“P且Q”為假,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知c>0,設(shè)p:函數(shù)y=cx在R上單調(diào)遞減;q:函數(shù)g(x)=lg(2cx2+2x+1)的定義域?yàn)镽,若“p且q”為假命題,“p或q”為真命題,求c的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案