設(shè)M為平面內(nèi)一些向量組成的集合,若對(duì)任意正實(shí)數(shù)λ和向量
a
∈M
,都有λ
a
∈M
,則稱M為“點(diǎn)射域”,則下列平面向量的集合為“點(diǎn)射域”的是( 。
分析:根據(jù)題中“點(diǎn)射域”的定義對(duì)各個(gè)選項(xiàng)依次加以判別.
解答:解:根據(jù)“點(diǎn)射域”的定義,可得向量
a
∈M
 時(shí),與它共線的向量λ
a
∈M也成立,
A:{(x,y)|y≥x2}表示終點(diǎn)在拋物線y≥x2上及其張口以內(nèi)的向量構(gòu)成的區(qū)域,向量
a
=(1,1)∈M,但3
a
=(3,3)∉M,故它不是“點(diǎn)射域”;
B.表示終點(diǎn)在圓x2+(y-1)2=1上及其外部的向量構(gòu)成的區(qū)域,向量
a
=(0,2)∈M,但
1
2
a
=(0,1)∉M,故它不是“點(diǎn)射域”;
C.可得任意正實(shí)數(shù)λ和向量
a
∈M,都有λ
a
∈M,故它是“點(diǎn)射域”;
D.表示終點(diǎn)在橢圓 3x2+2y2=12的向量構(gòu)成的區(qū)域,向量
a
=(1,1)∈M,但3
a
=(3,3)∉M,故它不是“點(diǎn)射域”.
故選C.
點(diǎn)評(píng):本題考查新定義的理解和應(yīng)用,著重考查集合與元素的關(guān)系和向量的性質(zhì)等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•崇明縣二模)設(shè)M為平面內(nèi)一些向量組成的集合,若對(duì)任意正實(shí)數(shù)λ和向量
a
∈M,都有λ
a
M,則稱M為“點(diǎn)射域”,在此基礎(chǔ)上給出下列四個(gè)向量集合:①{(x,y)|y≥x2};②{(x,y)|
x-y≥0
x+y≤0
};③{(x,y)|x2+y2-2y≥0};④{(x,y)|3x2+2y2-12<0}.其中平面向量的集合為“點(diǎn)射域”的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)M為平面內(nèi)一些向量組成的集合,若對(duì)任意正實(shí)數(shù)t和向量a∈M,都有ta∈M,則稱M為“點(diǎn)射域”.現(xiàn)有下列平面向量的集合:
①{(x,y)|x2≥y};
②{(x,y)|
x+y≥0
x+y≤0
};
③{(x,y)|x2+y2-2x≥0};
④{(x,y)|3x2+2y2-6<0}.
上述為“點(diǎn)射域”的集合有
(寫(xiě)出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•肇慶一模)設(shè)M為平面內(nèi)一些向量組成的集合,若對(duì)任意正實(shí)數(shù)λ和向量a∈M,都有λa∈M,則稱M為“點(diǎn)射域”,則下列平面向量的集合為“點(diǎn)射域”的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年高考數(shù)學(xué)復(fù)習(xí)卷C(八)(解析版) 題型:填空題

設(shè)M為平面內(nèi)一些向量組成的集合,若對(duì)任意正實(shí)數(shù)t和向量a∈M,都有ta∈M,則稱M為“點(diǎn)射域”.現(xiàn)有下列平面向量的集合:
①{(x,y)|x2≥y};
②{(x,y)|};
③{(x,y)|x2+y2-2x≥0};
④{(x,y)|3x2+2y2-6<0}.
上述為“點(diǎn)射域”的集合有    (寫(xiě)出所有正確命題的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案