3.已知命題p:若$?x∈(-\frac{π}{2},0)$,tanx<0,命題q:?x0∈(0,+∞),${2^{x_0}}=\frac{1}{2}$,則下列命題為真命題的是
( 。
A.p∧qB.(¬p)∧(?q)C.p∧(¬q)D.(¬p)∧q

分析 根據(jù)三角函數(shù)的性質(zhì)判斷p,根據(jù)指數(shù)函數(shù)的性質(zhì)判斷命題q,從而求出復(fù)合命題的判斷.

解答 解:對于命題p,當(dāng)$x∈(-\frac{π}{2}•0)$時,
由正切函數(shù)的圖象可知tanx<0,
所以命題p是真命題;
對于命題q,當(dāng)x0>0時,2x0>1,
所以命題q是假命題;
于是p∧(?q)為真命題;
故選:C.

點(diǎn)評 本題考查了復(fù)合命題的判斷,考查指數(shù)函數(shù)以及三角函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若-2≤x≤2,則函數(shù)$f(x)={(\frac{1}{4})}^{x}-3•{(\frac{1}{2})}^{x}+2$的值域?yàn)閇$-\frac{1}{4}$,6].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知正六邊形ABCDEF的邊長為2,沿對角線AE將△FAE的頂點(diǎn)F翻折到點(diǎn)P處,使得$PC=\sqrt{10}$.
(1)求證:平面PAE⊥平面ABCDE;
(2)求二面角B-PC-D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)$f(x)=x-\frac{a}{e^x}$.
(1)當(dāng)a=-1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在[0,1]上的最小值為$\frac{3}{2}$,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.為創(chuàng)建全國文明城市,某區(qū)向各事業(yè)行政單位征集“文明過馬路”義務(wù)督導(dǎo)員.從符合條件的600名志愿者中隨機(jī)抽取100名,按年齡作分組如下:[20,25),[25,30),[30,35),[35,40),[40,45],并得到如下頻率分布直方圖.
(Ⅰ)求圖中x的值,并根據(jù)頻率分布直方圖統(tǒng)計這600名志愿者中年齡在[30.40)的人數(shù);
(Ⅱ)在抽取的100名志愿者中按年齡分層抽取10名參加區(qū)電視臺“文明伴你行”節(jié)目錄制,再從這10名志愿者中隨機(jī)選取3名到現(xiàn)場分享勸導(dǎo)制止行人闖紅燈的經(jīng)歷,記這3名志愿者中年齡不低于35歲的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在平面直角坐標(biāo)系xOy中,拋物線C:x2=2py(p>0)的焦點(diǎn)為F,點(diǎn)A在C上,若|AO|=|AF|=$\frac{3}{2}$;
(Ⅰ)求C的方程;
(Ⅱ)設(shè)直線l與C交于P,Q,若線段PQ的中點(diǎn)的縱坐標(biāo)為1,求△OPQ的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知拋物線y2=4x,過焦點(diǎn)F作直線與拋物線交于點(diǎn)A,B(點(diǎn)A在x軸下方),點(diǎn)A1與點(diǎn)A關(guān)于x軸對稱,若直線AB斜率為1,則直線A1B的斜率為( 。
A.$\frac{\sqrt{3}}{3}$B.$\sqrt{3}$C.$\frac{\sqrt{2}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)△ABC 的內(nèi)角A,B,C所對的邊分別為a,b,c,若a2sinBsinC=4sinA,則△ABC的面積為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知圓O:x2+y2=1過橢圓C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$(a>b>0)的短軸端點(diǎn),P,Q分別是圓O與橢圓C上任意兩點(diǎn),且線段PQ長度的最大值為3.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)(0,t)作圓O的一條切線交橢圓C于M,N兩點(diǎn),求△OMN的面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案