已知函數(shù)(其中),為f(x)的導(dǎo)函數(shù).
(1)求證:曲線y=在點(diǎn)(1,)處的切線不過點(diǎn)(2,0);
(2)若在區(qū)間中存在,使得,求的取值范圍;
(3)若,試證明:對任意,恒成立.
(1)參考解析;(2); (3)參考解析
解析試題分析:(1)由函數(shù)(其中),求出,由于求y=在點(diǎn)(1,)處的切線方程,由點(diǎn)斜式可得結(jié)論.
(2)由,再利用分離變量即可得到.在再研究函數(shù)的單調(diào)性即可得到結(jié)論.
(3)由可得.需證任意,恒成立,等價證明.然后研究函數(shù),通過求導(dǎo)求出函數(shù)的最大值.研究函數(shù),通過求導(dǎo)得出函數(shù)的.再根據(jù)不等式的傳遞性可得結(jié)論.
(1)由得,,
所以曲線y=在點(diǎn)(1,)處的切線斜率為,
,曲線y=切線方程為,
假設(shè)切線過點(diǎn)(2,0),代入上式得:,得到0=1產(chǎn)生矛盾,所以假設(shè)錯誤,
故曲線y=在點(diǎn)(1,)處的切線不過點(diǎn)(2,0) 4分
(2)由得
,,所以在(0,1]上單調(diào)遞減,故 7分
(3)令,當(dāng)=1時,,所以..
因此,對任意,等價于. 9分
由,.所以.
因此,當(dāng)時,,單調(diào)遞增;時,,單調(diào)遞減.
所以的最大值為,故. 12分
設(shè),,所以時,單調(diào)遞增,,
故時,,即.
所以.
因此,對任意,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(是常數(shù))在處的切線方程為,且.
(1)求常數(shù)的值;
(2)若函數(shù)()在區(qū)間內(nèi)不是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(為小于的常數(shù)).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)存在使不等式成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)函數(shù)在處取得極值1.
(1)求實(shí)數(shù)b,c的值;
(2)求在區(qū)間[-2,2]上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,函數(shù),.
(1)若曲線與曲線在它們的交點(diǎn)處的切線互相垂直,求,的值;
(2)設(shè),若對任意的,且,都有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(1)若的極大值為,求實(shí)數(shù)的值;
(2)若對任意,都有恒成立,求實(shí)數(shù)的取值范圍;
(3)若函數(shù)f(x)滿足:在定義域內(nèi)存在實(shí)數(shù)x0,使f(x0+k)= f(x0)+ f(k)(k為常數(shù)),則稱“f(x)關(guān)于k可線性分解”. 設(shè),若關(guān)于實(shí)數(shù)a 可線性分解,求取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1)若函數(shù)在上是減函數(shù),求實(shí)數(shù)的取值范圍;
(2)是否存在實(shí)數(shù),當(dāng)(是自然常數(shù))時,函數(shù)的最小值是3,若存在,求出的值;若不存在,說明理由;
(3)當(dāng)時,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2013•天津)已知函數(shù)f(x)=x2lnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:對任意的t>0,存在唯一的s,使t=f(s).
(3)設(shè)(2)中所確定的s關(guān)于t的函數(shù)為s=g(t),證明:當(dāng)t>e2時,有.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com