【題目】在△ABC中,角A,B,C的對(duì)邊分別為ab,c,已知2bcosC=acosC+ccosA.

(1)求角C的大小;

(2)若b=2,c=,求a及△ABC的面積.

【答案】(1)C=;(2).

【解析】

(1)利用正弦定理將變換為角得cosC=,從而得解;
(2)由余弦定理可得a的值,進(jìn)而利用面積公式即可得解.

(1)∵2bcosC=acosC+ccosA,

∴由正弦定理可得:2sinBcosC=sinAcosC+cosAsinC,

可得:2sinBcosC=sin(A+C)=sinB,

∵sinB>0,∴cosC=,

∵C∈(0,),∴C=

(2)∵b=2,c=,C=

∴由余弦定理可得:7=a2+4﹣2×a,整理可得:a2﹣2a﹣3=0,

∴解得:a=3或﹣1(舍去),

∴△ABC的面積S=absinC=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為(限定).

(1)寫(xiě)出曲線(xiàn)的極坐標(biāo)方程,并求交點(diǎn)的極坐標(biāo);

(2)射線(xiàn)與曲線(xiàn)分別交于點(diǎn)異于原點(diǎn)),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 ,若,且的圖象相鄰的對(duì)稱(chēng)軸間的距離不小于.

(1)求的取值范圍.

(2)若當(dāng)取最大值時(shí), ,且在中, 分別是角的對(duì)邊,其面積,求周長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),記的解集為

(1)求集合(用區(qū)間表示);

(2)當(dāng)時(shí),求函數(shù)的最小值;

(3)若函數(shù)在區(qū)間上為增函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象與的圖象關(guān)于對(duì)稱(chēng),且,函數(shù)的定義域?yàn)?/span>

(1)求的值;

(2)若函數(shù)上是單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;

(3)若函數(shù)的最大值為2,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),等腰直角三角形的底邊,點(diǎn)在線(xiàn)段上,,現(xiàn)將沿折起到的位置(如圖(2))

(1)求證:

(2),直線(xiàn)與平面所成的角為,求長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】唐三彩,中國(guó)古代陶瓷燒制工藝的珍品,它吸取了中國(guó)國(guó)畫(huà)、雕塑等工藝美術(shù)的特點(diǎn),在中國(guó)文化中占有重要的歷史地位,在中國(guó)的陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產(chǎn)至今已有1300多年的歷史,對(duì)唐三彩的復(fù)制和仿制工藝,至今也有百余年的歷史,某陶瓷廠(chǎng)在生產(chǎn)過(guò)程中,對(duì)仿制的100件工藝品測(cè)得其重量(單位: )數(shù)據(jù),將數(shù)據(jù)分組如下表:

1)在答題卡上完成頻率分布表;

2)以表中的頻率作為概率,估計(jì)重量落在中的概率及重量小于2.45的概率是多少?

3統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值例如區(qū)間的中點(diǎn)值是2.25作為代表.據(jù)此估計(jì)這100個(gè)數(shù)據(jù)的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論的單調(diào)性并求極值;

(Ⅱ)若點(diǎn)在函數(shù)上,當(dāng),且時(shí),證明: 是自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下四個(gè)關(guān)于圓錐曲線(xiàn)的命題:

①設(shè)A,B是兩個(gè)定點(diǎn),k為非零常數(shù),若|PA|-|PB|=k,則P的軌跡是雙曲線(xiàn);

②過(guò)定圓C上一定點(diǎn)A作圓的弦AB,O為原點(diǎn),若.則動(dòng)點(diǎn)P的軌跡是橢圓;

③方程的兩根可以分別作為橢圓和雙曲線(xiàn)的離心率;

④雙曲線(xiàn)與橢圓有相同的焦點(diǎn).

其中正確命題的序號(hào)為________

查看答案和解析>>

同步練習(xí)冊(cè)答案