不透明的袋中有8張大小和形狀完全相同的卡片,卡片上分別寫有1,1,2,2,3,3,.現(xiàn) 從中任取3張卡片,假設(shè)每張卡片被取出的可能性相同.
(I)求取出的三張卡片中至少有一張字母卡片的概率;
(Ⅱ)設(shè)表示三張卡片上的數(shù)字之和.當(dāng)三張卡片中含有字母時,則約定:有一個字母和二個相同數(shù)字時為這二個數(shù)字之和,否則,求的分布列和期望.

(I)   (Ⅱ)ξ的分布列為:      

解析試題分析:⑴隨機(jī)取出3張卡片的所有可能結(jié)果為種,而取出的3張卡片中有2個數(shù)字和一個字母或1個數(shù)字和2個字母的可能結(jié)果為.因此,所求概率為=.        
⑵依據(jù)題意知,ξ的取值為0,2,4,5,6,7,8.        
當(dāng)ξ=0時,即三張卡片中有一個字母和二個不同數(shù)字,或二個字母一個數(shù)字,得
.;;;;;.∴ξ的分布列為:
       
 
考點(diǎn):古典概型及其概率計算公式.
點(diǎn)評:本題考查的知識點(diǎn)是古典概型及其概率計算公式,其中根據(jù)已知條件計算所有的基本事件個數(shù)及滿足條件的基本事件個數(shù)是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

今年我國部分省市出現(xiàn)了人感染H7N9禽流感確診病例,各地家禽市場受其影響生意冷清.A市雖未發(fā)現(xiàn)H7N9疑似病例,但經(jīng)抽樣有20%的市民表示還會購買本地家禽.現(xiàn)將頻率視為概率,解決下列問題:
(Ⅰ)從該市市民中隨機(jī)抽取3位,求至少有一位市民還會購買本地家禽的概率;
(Ⅱ)從該市市民中隨機(jī)抽取位,若連續(xù)抽取到兩位愿意購買本地家禽的市民,或
抽取的人數(shù)達(dá)到4位,則停止抽取,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知男人中有5%患色盲,女人中有0.25%患色盲,從100個男人和100個女人中任選一人.
(1)求此人患色盲的概率;
(2)如果此人是色盲,求此人是男人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)有關(guān)于x的一元二次方程x2+2axb2=0.
(1)若a是從0,1,2,3四個數(shù)中任取的一個數(shù),b是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實(shí)根的概率;
(2) 若是從區(qū)間[0,3] 任 取 的一個數(shù),是從區(qū)間[0,2]任取的一個數(shù),求上述方程有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

袋中裝著分別標(biāo)有數(shù)字1,2,3,4,5的5個形狀相同的小球.
(1)從袋中任取2個小球,求兩個小球所標(biāo)數(shù)字之和為3的倍數(shù)的概率;
(2)從袋中有放回的取出2個小球,記第一次取出的小球所標(biāo)數(shù)字為x,第二次為y,求點(diǎn)滿足的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

我區(qū)高三期末統(tǒng)一測試中某校的數(shù)學(xué)成績分組統(tǒng)計如下表:

分組
頻數(shù)
頻率















合計


(1)求出表中、、、的值,并根據(jù)表中所給數(shù)據(jù)在下面給出的坐標(biāo)系中畫出頻率分布直方圖;

(2)若我區(qū)參加本次考試的學(xué)生有600人,試估計這次測試中我區(qū)成績在分以上的人數(shù);
(3)若該校教師擬從分?jǐn)?shù)不超過60的學(xué)生中選取2人進(jìn)行個案分析,求被選中2人分?jǐn)?shù)不超過30分
的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

從裝有大小相同的2個紅球和6個白球的袋子中,每摸出2個球?yàn)橐淮卧囼?yàn),直到摸出的球中有紅球(不放回),則試驗(yàn)結(jié)束.
(Ⅰ)求第一次試驗(yàn)恰摸到一個紅球和一個白球概率;
(Ⅱ)記試驗(yàn)次數(shù)為,求的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

盒中裝有5個產(chǎn)品,其中3個一等品,2個二等品,從中不放回地取產(chǎn)品,每次1個,求:
(1)取兩次,兩次都取得一等品的概率;
(2)取兩次,第二次取得一等品的概率;
(3)取三次,第三次才取得一等品的概率;
(4)取兩次,已知第二次取得一等品,求第一次取得是二等品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某校高三年級組為了緩解學(xué)生的學(xué)習(xí)壓力,舉辦元宵猜燈謎活動。規(guī)定每人最多猜3道,在A區(qū)猜對一道燈謎獲3元獎品;在B區(qū)猜對一道燈謎獲2元獎品,如果前兩次猜題后所獲獎品總額超過3元即停止猜題,否則猜第三道題。假設(shè)某同學(xué)猜對A區(qū)的任意一道燈謎的概率為0.25,猜對B區(qū)的任意一道燈謎的概率為0.8,用表示該同學(xué)猜燈謎結(jié)束后所得獎品的總金額。
(1)若該同學(xué)選擇先在A區(qū)猜一題,以后都在B區(qū)猜題,求隨機(jī)變量的數(shù)學(xué)期望;
(2)試比較該同學(xué)選擇都在B區(qū)猜題所獲獎品總額超過3元與選擇(1)中方式所獲獎品總額超過3元的概率的大小。

查看答案和解析>>

同步練習(xí)冊答案