【題目】某工廠每日生產(chǎn)一種產(chǎn)品噸,每日生產(chǎn)的產(chǎn)品當日銷售完畢,日銷售額為萬元,產(chǎn)品價格隨著產(chǎn)量變化而有所變化,經(jīng)過段時間的產(chǎn)銷, 得到了的一組統(tǒng)計數(shù)據(jù)如下表:

日產(chǎn)量

1

2

3

4

5

日銷售量

5

12

16

19

21

(1)請判斷中,哪個模型更適合到畫之間的關(guān)系?可從函數(shù)增長趨勢方面給出簡單的理由;

(2)根據(jù)你的判斷及下面的數(shù)據(jù)和公式,求出關(guān)于的回歸方程,并估計當日產(chǎn)量時,日銷售額是多少?

參考數(shù)據(jù):

線性回歸方程中,,,

【答案】(1)答案見解析;(2)答案見解析.

【解析】分析:(1)根據(jù)函數(shù)增長的規(guī)律,分析可以得到更適合刻畫間的關(guān)系;

(2)利用有關(guān)公式,結(jié)合題中所給的條件,求得結(jié)果.

詳解:(1)更適合刻畫之間的關(guān)系,

理由如下: 值每增加,函數(shù)值的增加量分別為,增加得越來越緩慢,適合對數(shù)型函數(shù)的增長規(guī)律,與直線型函數(shù)的均勻增長存在較大差異,故更適合刻畫間的關(guān)系.

(2)令,計算知

所以

.

所以所求的回歸方程為

時,銷售額為(萬元)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),在以為極點,軸的正半軸為極軸的極坐標系中,曲線是圓心在極軸上,且經(jīng)過極點的圓.已知曲線上的點對應(yīng)的參數(shù),射線與曲線交于點

(1)求曲線、的直角坐標方程;

(2)若點在曲線上的兩個點且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點為,點為橢圓上的動點,若的最大值和最小值分別為.

(I)求橢圓的方程

(Ⅱ)設(shè)不過原點的直線與橢圓 交于兩點,若直線的斜率依次成等比數(shù)列,求面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正六棱錐的底面邊長為,高為.現(xiàn)從該棱錐的個頂點中隨機選取個點構(gòu)成三角形,設(shè)隨機變量表示所得三角形的面積.

(1)求概率的值;

(2)求的分布列,并求其數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,點EF,G分別為線段BC,PB,AD的中點.

1)證明:EF∥平面PAC

2)證明:平面PCG∥平面AEF;

3)在線段BD上找一點H,使得FH∥平面PCG,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著西部大開發(fā)的深入,西南地區(qū)的大學(xué)越來越受到廣大考生的青睞,下表是西南地區(qū)某大學(xué)近五年的錄取平均分與省一本線對比表:

年份

2014

2015

2016

2017

2018

年份代碼

1

2

3

4

5

省一本線

505

500

525

500

530

錄取平均分533

534

566

547

580

錄取平均分與省一本線分差y

28

34

41

47

50

(1)根據(jù)上表數(shù)據(jù)可知,yt之間存在線性相關(guān)關(guān)系,求y關(guān)于t的線性回歸方程;

(2)據(jù)以往數(shù)據(jù)可知,該大學(xué)每年的錄取分數(shù)X服從正態(tài)分布,其中為當年該大學(xué)的錄取平均分,假設(shè)2019年該省一本線為520分,李華2019年高考考了569分,他很喜歡這所大學(xué),想第一志愿填報,請利用概率與統(tǒng)計知識,給李華一個合理的建議.(第一志愿錄取可能性低于,則建議謹慎報考)

參考公式:,.

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線過點,其參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為.

(1)求的普通方程和的直角坐標方程;

(2)若交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在直角坐標系中,曲線C由以原點為圓心,半徑為2的半圓和中心在原點,焦點在x軸上的半橢圓構(gòu)成,以坐標原點為極點,x軸正半軸為極軸建立極坐標系.

(1)寫出曲線C的極坐標方程;

(2)已知射線與曲線C交于點M,點N為曲線C上的動點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【題目】已知拋物線C:y2=2x,過點(2,0)的直線l交C于A,B兩點,圓M是以線段AB為直徑的圓.

(1)證明:坐標原點O在圓M上;

(2)設(shè)圓M過點P(4,-2),求直線l與圓M的方程.

查看答案和解析>>

同步練習(xí)冊答案