已知數(shù)列的前項(xiàng)的和為, ,求證:數(shù)列為等差數(shù)列的充要條件是
詳見解析.

試題分析:從兩個方面來證明此題:若數(shù)列為等差數(shù)列,則其前項(xiàng)和是關(guān)于的二次函數(shù),且常數(shù)項(xiàng)為,即;若的前項(xiàng)和,可根據(jù)其前項(xiàng)和求出通項(xiàng)公式,從而可以證明其為等差數(shù)列.
試題解析:證:若數(shù)列為等差數(shù)列,則其前項(xiàng)和,是關(guān)于的二次函數(shù),且常數(shù)項(xiàng)為,而的前項(xiàng)和,所以;
反過來,當(dāng)數(shù)列的前項(xiàng)和,則,當(dāng)時,,時, ,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025807293314.png" style="vertical-align:middle;" />也符合,所以數(shù)列的通項(xiàng)公式為,,所以數(shù)列是以為首項(xiàng),為公差的等差數(shù)列.
綜上所述,數(shù)列為等差數(shù)列的充要條件是項(xiàng)和公式以及充分必要條件的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是曲線C:上的一點(diǎn)(其中),過點(diǎn)作與曲線C在處的切線垂直的直線軸于點(diǎn),過作與軸垂直的直線與曲線C在第一象限交于點(diǎn);再過點(diǎn)作與曲線C在處的切線垂直的直線交軸于點(diǎn),過作與軸垂直的直線與曲線C在第一象限交于點(diǎn);如此繼續(xù)下去,得一系列的點(diǎn)、、、、。(其中

(1)求數(shù)列的通項(xiàng)公式。
(2)若,且是數(shù)列的前項(xiàng)和,是數(shù)列的前項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

三個數(shù)成等比數(shù)列,其積為512,如果第一個數(shù)與第三個數(shù)各減2,則成等差數(shù)列,求這三個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列的各項(xiàng)都是正數(shù),且對任意,都有,其中 為數(shù)列的前項(xiàng)和。
(1)求證數(shù)列是等差數(shù)列;
(2)若數(shù)列的前項(xiàng)和為Tn,求Tn。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在等差數(shù)列中,,其前項(xiàng)和為,等比數(shù)列的各項(xiàng)均為正數(shù),,公比為,且.
(1)求;(2)設(shè)數(shù)列滿足,求的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列中,.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)當(dāng)取最大值時求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)等差數(shù)列的前項(xiàng)和為,滿足:.遞增的等比數(shù)列項(xiàng)和為,滿足:
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列,均有成立,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等比數(shù)列{an}的前n項(xiàng)和Sn=2n-a,n∈N*.設(shè)公差不為零的等差數(shù)列{bn}滿足:b1=a1+2,且b2+5,b4+5,b8+5成等比數(shù)列.
(Ⅰ)求a的值及數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{logan}的前n項(xiàng)和為Tn.求使Tn>bn的最小正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等差數(shù)列滿足,,則前n項(xiàng)和取最大值時,n的值為(     )
A.20B.21C.22D.23

查看答案和解析>>

同步練習(xí)冊答案