【題目】正方體的棱長(zhǎng)為2,EFG分別為,的中點(diǎn),則(

A.直線與直線垂直

B.直線與平面不平行

C.平面截正方體所得的截面面積為

D.點(diǎn)C與點(diǎn)G到平面的距離相等

【答案】C

【解析】

根據(jù)條件對(duì)選項(xiàng)進(jìn)行逐一分析, A.若有,則能得到平面,進(jìn)一步得到,顯然不成立,可判斷. B.的中點(diǎn)Q,連接,,可得平面平面,從而可判斷. C.連接,,延長(zhǎng),交于點(diǎn)S,由條件可得,截面即為梯形,再計(jì)算其面積. D.用等體積法分別求出點(diǎn)C和點(diǎn)G到平面的距離,從而判斷.

A.

又因?yàn)?/span>,所以平面,

所以,所以,顯然不成立,故結(jié)論錯(cuò)誤;

B.如圖所示,取的中點(diǎn)Q,連接,

由條件可知:,,且,,

所以平面平面,

又因?yàn)?/span>平面,所以平面,故結(jié)論不正確;

C.如圖所示,連接,延長(zhǎng),交于點(diǎn)S,

因?yàn)?/span>E,F,的中點(diǎn),所以,所以AE,F,四點(diǎn)共面,

所以,截面即為梯形

又因?yàn)?/span>,

所以,所以,故結(jié)論正確;

D.記點(diǎn)C與點(diǎn)G到平面的距離分別為,,

因?yàn)?/span>.

又因?yàn)?/span>,

所以,故結(jié)論錯(cuò)誤.

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

當(dāng)時(shí),取得極值,求的值并判斷是極大值點(diǎn)還是極小值點(diǎn);

當(dāng)函數(shù)有兩個(gè)極值點(diǎn),,且時(shí),總有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某蔬菜批發(fā)商經(jīng)銷某種新鮮蔬菜(以下簡(jiǎn)稱蔬菜),購(gòu)入價(jià)為200元/袋,并以300元/袋的價(jià)格售出,若前8小時(shí)內(nèi)所購(gòu)進(jìn)的蔬菜沒有售完,則批發(fā)商將沒售完的蔬菜以150元/袋的價(jià)格低價(jià)處理完畢(根據(jù)經(jīng)驗(yàn),2小時(shí)內(nèi)完全能夠把蔬菜低價(jià)處理完,且當(dāng)天不再購(gòu)進(jìn)).該蔬菜批發(fā)商根據(jù)往年的銷量,統(tǒng)計(jì)了100蔬菜在每天的前8小時(shí)內(nèi)的銷售量,制成如下頻數(shù)分布條形圖.

1)若某天該蔬菜批發(fā)商共購(gòu)入6蔬菜,有4蔬菜在前8小時(shí)內(nèi)分別被4名顧客購(gòu)買,剩下2袋在8小時(shí)后被另2名顧客購(gòu)買.現(xiàn)從這6名顧客中隨機(jī)選2人進(jìn)行服務(wù)回訪,則至少選中1人是以150元/袋的價(jià)格購(gòu)買的概率是多少?

2)以上述樣本數(shù)據(jù)作為決策的依據(jù).

i)若今年蔬菜上市的100天內(nèi),該蔬菜批發(fā)商堅(jiān)持每天購(gòu)進(jìn)6蔬菜,試估計(jì)該蔬菜批發(fā)商經(jīng)銷蔬菜的總盈利值;

ii)若明年該蔬菜批發(fā)商每天購(gòu)進(jìn)蔬菜的袋數(shù)相同,試幫其設(shè)計(jì)明年的蔬菜的進(jìn)貨方案,使其所獲取的平均利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】石嘴山市第三中學(xué)高三年級(jí)統(tǒng)計(jì)學(xué)生的最近20次數(shù)學(xué)周測(cè)成績(jī)(滿分150分),現(xiàn)有甲乙兩位同學(xué)的20次成績(jī)?nèi)缜o葉圖所示:

1)根據(jù)莖葉圖求甲乙兩位同學(xué)成績(jī)的中位數(shù),并將同學(xué)乙的成績(jī)的頻率分布直方圖填充完整;

(2)根據(jù)莖葉圖比較甲乙兩位同學(xué)數(shù)學(xué)成績(jī)的平均值及穩(wěn)定程度(不要求計(jì)算出具體值,給出結(jié)論即可);

(3)現(xiàn)從甲乙兩位同學(xué)的不低于140分的成績(jī)中任意選出2個(gè)成績(jī),記事件為“其中2個(gè)成績(jī)分別屬于不同的同學(xué)”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在等腰梯形中,,,,點(diǎn)的中點(diǎn).將沿折起,使點(diǎn)到達(dá)的位置,得到如圖所示的四棱錐,點(diǎn)為棱的中點(diǎn).

(1)求證:平面;

(2)若平面平面,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體的棱長(zhǎng)為2平面.平面截此正方體所得的截面有以下四個(gè)結(jié)論:

①截面形狀可能是正三角形②截面的形狀可能是正方形

③截面形狀可能是正五邊形④截面面積最大值為

則正確結(jié)論的編號(hào)是(

A.①④B.①③C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了121日至124日的每天晝夜溫度與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):

日期

121

122

123

124

溫差

11

13

12

8

發(fā)芽數(shù)(顆)

26

32

26

17

根據(jù)表中121日至123日的數(shù)據(jù),求得線性回歸方程中的,則求得的_____;若用124日的數(shù)據(jù)進(jìn)行檢驗(yàn),檢驗(yàn)方法如下:先用求得的線性回歸方程計(jì)算發(fā)芽數(shù),再求與實(shí)際發(fā)芽數(shù)的差,若差值的絕對(duì)值不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,則求得的線性回歸方程_____(填可靠不可靠).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)),直線經(jīng)過點(diǎn)且傾斜角為.

1)求曲線的極坐標(biāo)方程和直線的參數(shù)方程;

2)已知直線與曲線交于,滿足的中點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓經(jīng)過橢圓的左右焦點(diǎn),與橢圓在第一象限的交點(diǎn)為,且, 三點(diǎn)共線.

(1)求橢圓的方程;

(2)設(shè)與直線為原點(diǎn))平行的直線交橢圓兩點(diǎn),當(dāng)的面積取取最大值時(shí),求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案