【題目】某市為了了解今年高中畢業(yè)生的體能狀況,從本市某校高中畢業(yè)班中抽取一個班進行鉛球測試,成績在8.0米(精確到0.1米)以上的為合格.把所得數(shù)據(jù)進行整理后,分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個小組的頻率分別為0.04,0.10,0.14,0.28,0.30.第6小組的頻數(shù)是7.
(1)求這次鉛球測試成績合格的人數(shù);
(2)若由直方圖來估計這組數(shù)據(jù)的中位數(shù),指出它在第幾組內(nèi),并說明理由;
(3)若參加此次測試的學生中,有9人的成績?yōu)閮?yōu)秀,現(xiàn)在要從成績優(yōu)秀的學生中,隨機選出2人參加“畢業(yè)運動會”,已知a、b的成績均為優(yōu)秀,求兩人至少有1人入選的概率。
【答案】(1)36(2)4(3)
【解析】試題分析:(1)由頻率分布直方圖的面積和為1,可求得第6組頻率為0.14,從而求得總?cè)藬?shù)為50人,由圖可知第4、5、6組成績均合格,由頻率和乘以總?cè)藬?shù)可求。(2)直方圖中位數(shù)在面積為0.5的位置,前三組的頻率和為0.28,前四組的頻率和為0.56,所以中位數(shù)位于第4組內(nèi)。(3)設(shè)成績優(yōu)秀的9人分別為a,b,c,d,e,f,g,h,k,采用枚舉法,算出總情況36種,和滿足條件的情況共15種,由古典概型可求得概率。
試題解析:(1)第6小組的頻率為1﹣(0.04+0.10+0.14+0.28+0.30)=0.14,
∴此次測試總?cè)藬?shù)為(人).
∴第4、5、6組成績均合格,人數(shù)為(0.28+0.30+0.14)×50=36(人).
(2)直方圖中中位數(shù)兩側(cè)的面積相等,即頻率相等.前三組的頻率和為0.28,前四組的頻率和為0.56,∴中位數(shù)位于第4組內(nèi).
(3)設(shè)成績優(yōu)秀的9人分別為a,b,c,d,e,f,g,h,k,
則選出的2人所有可能的情況為:ab,ac,ad,ae,af,ag,ah,ak;bc,bd,be,bf,
bg,bh,bk;cd,ce,cf,cg,ch,ck;de,df,dg,dh,dk;ef,eg,eh,ek;fg,fh,fk;gh,gk;hk.共36種,其中a、b到少有1人入選的情況有15種,
∴a、b兩人至少有1人入選的概率為.
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)是偶函數(shù),且在(﹣∞,0]上是增函數(shù),又f(2)=0,則xf(x)>0的解集是( )
A.(﹣2,2)
B.(﹣∞,﹣2)∪(0,2)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣2,0]∪(2,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為函數(shù)f(x)的不動點.已知f(x)=x2+bx+c
(1)若f(x)有兩個不動點為﹣3,2,求函數(shù)y=f(x)的零點?
(2)若c= 時,函數(shù)f(x)沒有不動點,求實數(shù)b的取值范圍?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)市場調(diào)查:生產(chǎn)某產(chǎn)品需投入年固定成本為3萬元,每生產(chǎn)x萬件,需另投入流動成本為W(x)萬元,在年產(chǎn)量不足8萬件時,W(x)= x2+x(萬元),在年產(chǎn)量不小于8萬件時,W(x)=6x+ ﹣38(萬元).通過市場分析,每件產(chǎn)品售價為5元時,生產(chǎn)的商品能當年全部售完.
(1)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(萬件)的函數(shù)解析式;
(2)寫出當產(chǎn)量為多少時利潤最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司今年一月份推出新產(chǎn)品A,其成本價為492元/件,經(jīng)試銷調(diào)查,銷售量與銷售價的關(guān)系如下表:
銷售價(x/元件) | 650 | 662 | 720 | 800 |
銷售量(y件) | 350 | 333 | 281 | 200 |
由此可知,銷售量y(件)與銷售價x(元/件)可近似看作一次函數(shù)y=kx+b的關(guān)系(通常取表中相距較遠的兩組數(shù)據(jù)所得一次函數(shù)較為精確).
(1)寫出以x為自變量的函數(shù)y的解析式及定義域;
(2)試問:銷售價定為多少時,一月份銷售利潤最大?并求最大銷售利潤和此時的銷售量.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響.對近8年的年宣傳費xi和年銷售量yi(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到下面的散點圖及下面一些統(tǒng)計量的值.
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中 , .
附:對于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸直線v=α+βu的斜率和截距的最下二乘估計分別為 , .
(1)根據(jù)散點圖判斷,y=a+bx與 哪一個適宜作為年銷售量y關(guān)于年宣傳費x的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(3)已知這種產(chǎn)品的年利潤z與x,y的關(guān)系為z=0.2y-x.根據(jù)(2)的結(jié)果回答下列問題:
①年宣傳費x=49時,年銷售量及年利潤的預(yù)報值時多少?
②年宣傳費x為何值時,年利潤的預(yù)報值最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在四邊形ABCD中,∠D=2∠B,且AD=1,CD=3,cos∠B=
(1)求△ACD的面積;
(2)若BC=2 ,求AB的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)全集為R,集合A=(﹣∞,﹣1)∪(3,+∞),記函數(shù)f(x)= 的定義域為集合B
(1)分別求A∩B,A∩RB;
(2)設(shè)集合C={x|a+3<x<4a﹣3},若B∩C=C,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,直線與橢圓交于兩點,與軸交于點, 為弦的中點,直線分別與直線和直線交于兩點.
(1)求直線的斜率和直線的斜率之積;
(2)分別記和的面積為,是否存在正數(shù),使得若存在,求出的取值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com