已知直線l:4x-3y+6=0,拋物線y2=4x上一動點到y(tǒng)軸和到直線的距離之和的最小值為
1
1
分析:設出拋物線上一點P的坐標,然后利用點到直線的距離公式分別求出P到直線l1和直線l2的距離d1和d2,求出d1+d2,利用二次函數(shù)求最值的方法即可求出距離之和的最小值.
解答:解:設拋物線上的一點P的坐標為(a2,2a),則P到y(tǒng)軸的距離d2=a2;
P到直線l:4x-3y+6=0的距離d1=
|4a2-6a+6|
5

則d1+d2=
|4a2-6a+6|
5
+a2=
9a2-6a+6
5
=
9(a-
1
3
)
2
+5
5
,
當a=
1
3
時,P到y(tǒng)軸和到直線的距離之和的最小值為1
故答案為:1
點評:本題考查學生靈活運用拋物線的簡單性質(zhì)解決實際問題,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知直線l:4x+3y-8=0(a∈R)過圓C:x2+y2-ax=0的圓心交圓C于A、B兩點,O為坐標原點.
(I)求圓C的方程;
(II) 求圓C在點P(1,
3
)處的切線方程;
(III)求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:橢圓C的中心在原點,焦點在x軸上,焦距為8,且經(jīng)過點(0,3)
(1)求此橢圓的方程
(2)若已知直線l:4x-5y+40=0,問:橢圓C上是否存在一點,使它到直線l的距離最。孔钚【嚯x是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知:橢圓C的中心在原點,焦點在x軸上,焦距為8,且經(jīng)過點(0,3)
(1)求此橢圓的方程
(2)若已知直線l:4x-5y+40=0,問:橢圓C上是否存在一點,使它到直線l的距離最。孔钚【嚯x是多少?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知:橢圓C的中心在原點,焦點在x軸上,焦距為8,且經(jīng)過點(0,3)
(1)求此橢圓的方程
(2)若已知直線l:4x-5y+40=0,問:橢圓C上是否存在一點,使它到直線l的距離最。孔钚【嚯x是多少?

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年湖南省長沙市長郡中學高二(下)期末數(shù)學試卷(理科)(解析版) 題型:解答題

已知:橢圓C的中心在原點,焦點在x軸上,焦距為8,且經(jīng)過點(0,3)
(1)求此橢圓的方程
(2)若已知直線l:4x-5y+40=0,問:橢圓C上是否存在一點,使它到直線l的距離最?最小距離是多少?

查看答案和解析>>

同步練習冊答案