已知數(shù)列{bn}的前n項和為Tn,且Tn-2bn+3=0,n∈N*
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)設(shè)Cn=
log2(
bn
3
),n為奇數(shù)
bn,n為偶數(shù)
,求數(shù)列{cn}的前2n+1項和P2n+1
考點:數(shù)列遞推式,數(shù)列的求和
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(Ⅰ)當n≥2時,Sn-1-2bn-1+3=0,兩式相減,得數(shù)列{bn}為等比數(shù)列,即可求數(shù)列{bn}的通項公式;
(Ⅱ)確定數(shù)列{cn}的通項,利用分組求和的方法求數(shù)列{cn}的前2n+1項和P2n+1
解答: 解:(Ⅰ)∵Tn-2bn+3=0,∴當n=1時,b1=3,
當n≥2時,Sn-1-2bn-1+3=0,兩式相減,得bn=2bn-1,(n≥2)
∴數(shù)列{bn}為等比數(shù)列,∴bn=3•2n-1.                        …(6分)
(Ⅱ)cn=
n -1,     n為奇數(shù)
3•2n-1 , n為偶數(shù)
.      
令an=n-1,…(8分)
故P2n+1=(a1+a3+…+a2n+1)+(b2+b4+…+b2n)=
(0+2n)•(n+1)
2
+
6(1-4n)
1-4
…(12分)
=22n+1+n2+n-2…(14分)
點評:本題考查數(shù)列遞推式,考查數(shù)列的通項與求和,確定數(shù)列{bn}為等比數(shù)列是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx+ϕ)+b的圖象如圖所示,則S=f(0)+f(1)+…+f(2014)等于( 。
A、0
B、
4025
2
C、
4029
2
D、
4031
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+a,g(x)=x-a.
(Ⅰ)當直線y=g(x)恰好為曲線y=f(x)的切線時,求a的值;
(Ⅱ)若不等式kg(x+a)≥f(x)-a在(0,+∞)上恒成立,求k的最小值;
(Ⅲ)當a>0時,若函數(shù)F(x)=f(x)•g(x)在區(qū)間[e-
3
2
,1]上不單調(diào),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某高校自主招生面試成績的莖葉圖和頻率分布直方圖均受到不同程度的破壞,其可見部分信息如圖所示,據(jù)此解答下列問題;
(Ⅰ)求參加此次高校自主招生面試的人數(shù)n、面試成績的中位數(shù)及分數(shù)分別在[80,90),[90,100)內(nèi)的人數(shù);
(Ⅱ)若從面試成績在[80,100)內(nèi)的學(xué)生中任選兩人進行隨機復(fù)查,求恰好有一人分數(shù)在[90,100)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的公比為q,且滿足an+1<an,a1+a2+a3=
13
9
,a1a2a3=
1
27

(1)求數(shù)列{an}的通項公式;
(2)記數(shù)列{(2n-1)•an}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,已知AB=1,BC=2,CD=4,AB∥CD,BC⊥CD,平面PAB⊥平面ABCD,PA⊥AB.
(1)求證:BD⊥平面PAC;
(2)已知點F在棱PD上,且PB∥平面FAC,求DF:FP.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別為內(nèi)角A,B,C所對的邊,且滿足sinA+
3
cosA=2.
(1)求A的大小;
(2)現(xiàn)給出三個條件:①a=2; ②B=45°;③c=
3
b.
試從中選出兩個可以確定△ABC的條件,寫出你的選擇并以此為依據(jù)求△ABC的面積(只需寫出一個選定方案即可,選多種方案以第一種方案記分).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,PC切⊙O于點C,割線PAB經(jīng)過圓心O,弦CD⊥AB于點E,已知⊙O的半徑為3,PA=2,則OE=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面直角坐標系xOy內(nèi)直線l的參數(shù)方程為
x=t
y=t-2
(t為參數(shù)),以O(shè)x為極軸建立極坐標系(取相同的長度單位),圓C的極坐標方程為ρ=2
2
sin(θ+
π
4
),則直線l與圓C的公共點的個數(shù)為
 

查看答案和解析>>

同步練習(xí)冊答案