cos34°cos26°-cos56°sin26°=(  )
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2
考點:兩角和與差的正弦函數(shù)
專題:三角函數(shù)的求值
分析:利用兩角和差的余弦公式、誘導公式,吧要求的式子化為cos60°,從而得到結(jié)果.
解答: 解:cos34°cos26°-cos56°sin26°
=cos34°cos26°-sin34°sin26°
=cos(34°+26°)
=cos60°=
1
2
,
故選:A.
點評:本題主要考查兩角和差的余弦公式,誘導公式的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知a2-c2=2b,且sinAcosC=3cosAsinC,則b=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從集合A={1,2,3,4,5}中任取3個數(shù),這3個數(shù)的和能被3整除的概率為(  )
A、
1
5
B、
3
10
C、
2
5
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以下結(jié)論正確的是( 。
A、終邊相同的角一定相等
B、第一象限的角都是銳角
C、x軸上的角均可表示為2kπ,k∈Z
D、y=cos(-x)是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓
x2
10
+y2=1的焦距比短軸長( 。
A、
10
-1
B、2
10
-2
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以下命題中:
①p∨q為假命題,則p與q均為假命題;
②對具有線性相關關系的變量x,y,有一組觀測數(shù)據(jù)(xi,yi)(i=1,2,…,8),其回歸直線方程是y=
1
3
x+a,且x1+x2+x3+…+x8=2(y1+y2+y3+…+y8)=6,則實數(shù)a=
1
4
;
③對于分類變量x與y,它們的隨機變量X2的觀測值X2來說,X2越小,“x與y有關聯(lián)”的把握程度越大;
④已知
x-1
2-x
≥0,則函數(shù)f(x)=2 x+
4
x
的最小值為16.
其中真命題個數(shù)為( 。
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

閱讀如圖的程序框圖,若運行相應的程序,則輸出的S的值為( 。
A、64B、66C、98D、258

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,sinA=
1
3
,角A的對邊長度為2,則外接圓半徑是( 。
A、3
B、6
C、
2
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別是a,b,c,已知bcosA=
3
asin(A+C).
(Ⅰ)求A;
(Ⅱ)若c=
3
,且△ABC的面積為
3
,求a的值.

查看答案和解析>>

同步練習冊答案