如圖,已知圓C:x2+y2=r2與x軸負(fù)半軸的交點(diǎn)為A.由點(diǎn)A出發(fā)的射線(xiàn)l的斜率為k,且k為有理數(shù).射線(xiàn)l與圓C相交于另一點(diǎn)B.
(1)當(dāng)r=1時(shí),試用k表示點(diǎn)B的坐標(biāo);
(2)當(dāng)r=1時(shí),試證明:點(diǎn)B一定是單位圓C上的有理點(diǎn);(說(shuō)明:坐標(biāo)平面上,橫、縱坐標(biāo)都為有理數(shù)的點(diǎn)為有理點(diǎn).我們知道,一個(gè)有理數(shù)可以表示為,其中p、q均為整數(shù)且p、q互質(zhì))
(3)定義:實(shí)半軸長(zhǎng)a、虛半軸長(zhǎng)b和半焦距c都是正整數(shù)的雙曲線(xiàn)為“整勾股雙曲線(xiàn)”.
當(dāng)0<k<1時(shí),是否能構(gòu)造“整勾股雙曲線(xiàn)”,它的實(shí)半軸長(zhǎng)、虛半軸長(zhǎng)和半焦距的長(zhǎng)恰可由點(diǎn)B的橫坐標(biāo)、縱坐標(biāo)和半徑r的數(shù)值構(gòu)成?若能,請(qǐng)嘗試探索其構(gòu)造方法;若不能,試簡(jiǎn)述你的理由.

【答案】分析:(1)當(dāng)r=1時(shí),可知A點(diǎn)坐標(biāo),就可設(shè)出直線(xiàn)l的點(diǎn)斜式方程,代入圓方程,解出B點(diǎn)坐標(biāo).
(2)由(1)中求出的用k表示點(diǎn)B的坐標(biāo),來(lái)判斷,當(dāng)k為有理數(shù)時(shí),點(diǎn)B是否為有理點(diǎn),當(dāng)B為有理點(diǎn)時(shí),k是否為有理數(shù),證明中用到一個(gè)有理數(shù)可以表示為,即若一個(gè)數(shù)是有理數(shù),則這個(gè)數(shù)一定可以表示成的形式,若一個(gè)數(shù)可以表示成的形式,則這個(gè)數(shù)一定為有理數(shù).
(3)先假設(shè)當(dāng)0<k<1時(shí),能構(gòu)造“整勾股雙曲線(xiàn)”,它的實(shí)半軸長(zhǎng)、虛半軸長(zhǎng)和半焦距的長(zhǎng)恰可由點(diǎn)B的橫坐標(biāo)、縱坐標(biāo)和半徑r的數(shù)值構(gòu)成.由(2)中結(jié)論,可找到此雙曲線(xiàn)的實(shí)半軸長(zhǎng)、虛半軸長(zhǎng)和半焦距,都用含p,q,r的式子表示,其中,p,q,r均為整數(shù),且p,q互質(zhì).據(jù)此求出k值,看是否為整數(shù),若是,則假設(shè)成立,若不是,則假設(shè)不成立.
解答:解:(1)設(shè)點(diǎn)B的坐標(biāo)為B(x2,y2).由題意,點(diǎn)A的坐標(biāo)為(-1,0),于是可設(shè)射線(xiàn)l的方程
為y=k(x+1),代入圓C的方程可得:x2+k2(x+1)2=1?(1+k2)x2+2k2x+(k2-1)=0.①
方程①中,一個(gè)解必為x=-1,則由根與系數(shù)關(guān)系可知點(diǎn)B的橫坐標(biāo)為;代入直線(xiàn)方程可得.∴點(diǎn)B的坐標(biāo)即為
(2)充分性:設(shè)射線(xiàn)l的斜率(其中p、q均為整數(shù)且p、q互質(zhì)),則由(1)可知,.因?yàn)閜、q均為整數(shù),所以x2、y2必為一個(gè)有理數(shù),從而B(niǎo)點(diǎn)必為一個(gè)有理點(diǎn).
必要性:若B點(diǎn)為有理點(diǎn),則可設(shè),(其中p1、q1、p2、q2均為整數(shù)且p1和q1互質(zhì)、p2和q2互質(zhì))于是,,因?yàn)閜1、q1、p2、q2均為整數(shù),所以k必為一個(gè)有理數(shù).
(3)設(shè)B點(diǎn)的坐標(biāo)為(x2,y2).當(dāng)0<k<1時(shí),B點(diǎn)必定落在第一象限的四分之一圓周上,即x2>0,y2>0.而由x22+y22=r2,所以B的橫坐標(biāo)x2、縱坐標(biāo)y2以及圓的半徑r必能構(gòu)成某個(gè)雙曲線(xiàn)的一組實(shí)半軸長(zhǎng)、虛半軸長(zhǎng)和半焦距的數(shù)據(jù).由(2)結(jié)論可知,此時(shí)點(diǎn)B的坐標(biāo)應(yīng)為其中p、q此時(shí)均為正整數(shù)且p、q互質(zhì).
于是,只要構(gòu)造圓半徑r=(p2+q2)•m(其中m為正整數(shù))時(shí),則會(huì)有x2=|p2-q2|•m,y2=2pq•m,它們都為正整數(shù),且滿(mǎn)足x22+y22=r2
因此,對(duì)于斜率為(其中p、q均為整數(shù),p>q>0且p、q互質(zhì))的斜線(xiàn)l,只需確定圓的半徑滿(mǎn)足r=(p2+q2)•m(其中m為正整數(shù)),則必定能構(gòu)造“整勾股雙曲線(xiàn)”滿(mǎn)足題意.
特別地,因?yàn)楫?dāng)x2=y2時(shí),點(diǎn)B坐標(biāo)必為,而此時(shí)射線(xiàn)l的斜率為,不是有理數(shù).∴構(gòu)造出的雙曲線(xiàn)一定不是等軸雙曲線(xiàn),即由x2≠y2,可構(gòu)造的“整勾股雙曲線(xiàn)”的實(shí)半軸長(zhǎng)、虛半軸長(zhǎng)和半焦距長(zhǎng)可由構(gòu)成,且個(gè)數(shù)一定為偶數(shù)個(gè).
點(diǎn)評(píng):本題主要考查了直線(xiàn)與圓位置關(guān)系、沖要條件的證明,以及理解能力、推理能力,解題時(shí)要認(rèn)真理解題意,仔細(xì)運(yùn)算,本題有較大的思維量和運(yùn)算量
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知圓C:x2+y2=2與x軸交于A1、A2兩點(diǎn),橢圓E以線(xiàn)段A1A2為長(zhǎng)軸,離心率e=
2
2

(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)橢圓E的左焦點(diǎn)為F,點(diǎn)P為圓C上異于A1、A2的動(dòng)點(diǎn),過(guò)原點(diǎn)O作直線(xiàn)PF的垂線(xiàn)交直線(xiàn)x=-2于點(diǎn)Q,判斷直線(xiàn)PQ與圓C的位置關(guān)系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知圓C:x2+y2+10x+10y=0,點(diǎn)A(0,6).
(1)求圓心在直線(xiàn)y=x上,經(jīng)過(guò)點(diǎn)A,且與圓C相切的圓N的方程;
(2)若過(guò)點(diǎn)A的直線(xiàn)m與圓C交于P,Q兩點(diǎn),且圓弧PQ恰為圓C周長(zhǎng)的
14
,求直線(xiàn)m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•普陀區(qū)一模)如圖,已知圓C:x2+y2=r2與x軸負(fù)半軸的交點(diǎn)為A.由點(diǎn)A出發(fā)的射線(xiàn)l的斜率為k,且k為有理數(shù).射線(xiàn)l與圓C相交于另一點(diǎn)B.
(1)當(dāng)r=1時(shí),試用k表示點(diǎn)B的坐標(biāo);
(2)當(dāng)r=1時(shí),試證明:點(diǎn)B一定是單位圓C上的有理點(diǎn);(說(shuō)明:坐標(biāo)平面上,橫、縱坐標(biāo)都為有理數(shù)的點(diǎn)為有理點(diǎn).我們知道,一個(gè)有理數(shù)可以表示為
qp
,其中p、q均為整數(shù)且p、q互質(zhì))
(3)定義:實(shí)半軸長(zhǎng)a、虛半軸長(zhǎng)b和半焦距c都是正整數(shù)的雙曲線(xiàn)為“整勾股雙曲線(xiàn)”.
當(dāng)0<k<1時(shí),是否能構(gòu)造“整勾股雙曲線(xiàn)”,它的實(shí)半軸長(zhǎng)、虛半軸長(zhǎng)和半焦距的長(zhǎng)恰可由點(diǎn)B的橫坐標(biāo)、縱坐標(biāo)和半徑r的數(shù)值構(gòu)成?若能,請(qǐng)嘗試探索其構(gòu)造方法;若不能,試簡(jiǎn)述你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年高三4月學(xué)情診斷數(shù)學(xué)試卷(二)(解析版) 題型:解答題

如圖,已知圓C:x2+y2=2與x軸交于A1、A2兩點(diǎn),橢圓E以線(xiàn)段A1A2為長(zhǎng)軸,離心率
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)橢圓E的左焦點(diǎn)為F,點(diǎn)P為圓C上異于A1、A2的動(dòng)點(diǎn),過(guò)原點(diǎn)O作直線(xiàn)PF的垂線(xiàn)交直線(xiàn)x=-2于點(diǎn)Q,判斷直線(xiàn)PQ與圓C的位置關(guān)系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:高考數(shù)學(xué)最后沖刺必讀題解析30講(30)(解析版) 題型:解答題

如圖,已知圓C:x2+y2=2與x軸交于A1、A2兩點(diǎn),橢圓E以線(xiàn)段A1A2為長(zhǎng)軸,離心率
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)橢圓E的左焦點(diǎn)為F,點(diǎn)P為圓C上異于A1、A2的動(dòng)點(diǎn),過(guò)原點(diǎn)O作直線(xiàn)PF的垂線(xiàn)交直線(xiàn)x=-2于點(diǎn)Q,判斷直線(xiàn)PQ與圓C的位置關(guān)系,并給出證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案