【題目】互不相等的三個正數(shù)x1 , x2 , x3成等比數(shù)列,且點P1(logax1 , logby1)P2(logax2 , logby2),P3(logax3 , logby3)共線(a>0且a≠0,b>且b≠1)則y1 , y2 , y3成(
A.等差數(shù)列,但不等比數(shù)列
B.等比數(shù)列而非等差數(shù)列
C.等比數(shù)列,也可能成等差數(shù)列
D.既不是等比數(shù)列,又不是等差數(shù)列

【答案】C
【解析】解:∵三點共線 ∴ =
=
∵x1 , x2 , x3成等比數(shù)列,
=
=
∴y1 , y2 , y3成等比數(shù)列,
若y1 , y2 , y3相等,
y1 , y2 , y3也成等差數(shù)列
∴y1 , y2 , y3可能成等比數(shù)列,也可能成差數(shù)列
故選C
【考點精析】解答此題的關(guān)鍵在于理解等差關(guān)系的確定的相關(guān)知識,掌握如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),即=d ,(n≥2,n∈N)那么這個數(shù)列就叫做等差數(shù)列,以及對等比關(guān)系的確定的理解,了解等比數(shù)列可以通過定義法、中項法、通項公式法、前n項和法進行判斷.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,丨φ丨< )的部分圖象如圖所示,則f(x)的解析式為(
A.f(x)=2sin(x+
B.f(x)=2sin(2x+
C.f(x)=2sin(2x﹣
D.f(x)=2sin(4x﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解答題
(1)在等比數(shù)列{an}中,a5=162,公比q=3,前n項和Sn=242,求首項a1和項數(shù)n.
(2)有四個數(shù),其中前三個數(shù)成等比數(shù)列,其積為216,后三個數(shù)成等差數(shù)列,其和為36,求這四個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著人民生活水平的提高,對城市空氣質(zhì)量的關(guān)注度也逐步增大,圖2是某城市1月至8月的空氣質(zhì)量檢測情況,圖中一、二、三、四級是空氣質(zhì)量等級, 一級空氣質(zhì)量最好,一級和二級都是質(zhì)量合格天氣,下面四種說法正確的是( )

①1月至8月空氣合格天數(shù)超過20天的月份有5個

②第二季度與第一季度相比,空氣達標(biāo)天數(shù)的比重下降了

③8月是空氣質(zhì)量最好的一個月

④6月份的空氣質(zhì)量最差

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,與軸的正半軸交于點,右焦點 為坐標(biāo)原點,且

(1)求橢圓的離心率;

(2)已知點,過點任意作直線與橢圓交于兩點,設(shè)直線的斜率,若,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若曲線在點處的切線經(jīng)過點,求的值;

(2)若內(nèi)存在極值,求的取值范圍;

(3)當(dāng)時, 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】襄陽農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫度與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):

襄陽農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.

(1)求選取的2組數(shù)據(jù)恰好是不相鄰的2天數(shù)據(jù)的概率;

(2)若選取的是12月1日與12月5日這兩組數(shù)據(jù),情根據(jù)12月2日至12月4日的數(shù)據(jù),求關(guān)于的線性回歸方程;

(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過1顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

注: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與圓O: 且與橢圓C: 相交于A,B兩點

(1)若直線恰好經(jīng)過橢圓的左頂點,求弦長AB;

(2)設(shè)直線OA,OB的斜率分別為k1,k2,判斷k1·k2是否為定值,并說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代一部重要的數(shù)學(xué)著作,書中給出了如下問題:“今有良馬與駑馬發(fā)長安,至齊,齊去長安一千一百二十五里.良馬初日行一百零三里,日增一十三里,駑馬初日行九十七里,日減半里,良馬先至齊,復(fù)還迎駑馬,問幾何日相逢?”其大意:“現(xiàn)有良馬和駑馬同時從長安出發(fā)到齊去,已知長安和齊的距離是.良馬第一天走里,之后每天比前一天多走.駑馬笫一天走里,之后每天比前一天少走.良馬到齊后,立刻返回去迎駑馬,多少天后兩馬相遇?”在這個問題中駑馬從出發(fā)到相遇行走的路程為__________.

查看答案和解析>>

同步練習(xí)冊答案