設(shè)全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥x-2}.
(1)求?U(A∩B);
(2)若集合C={x|2x+a>0},滿(mǎn)足B∪C=C,求實(shí)數(shù)a的取值范圍.
分析:(1)求出集合B中不等式的解集確定出集合B,求出集合A與集合B的公共解集即為兩集合的交集,根據(jù)全集為R,求出交集的補(bǔ)集即可;
(2)求出集合C中的不等式的解集,確定出集合C,由B與C的并集為集合C,得到集合B為集合C的子集,即集合B包含于集合C,從而列出關(guān)于a的不等式,求出不等式的解集即可得到a的范圍.
解答:解:(1)由集合B中的不等式2x-4≥x-2,解得x≥2,
∴B={x|x≥2},又A={x|-1≤x<3},
∴A∩B={x|2≤x<3},又全集U=R,
∴?U(A∩B)={x|x<2或x≥3};
(2)由集合C中的不等式2x+a>0,解得x>-
a
2
,
C={x|x>-
a
2
}

∵B∪C=C,∴B⊆C,
∴-
a
2
≤2,解得a≥-4.
點(diǎn)評(píng):此題考查了交集及補(bǔ)集的元素,集合的包含關(guān)系判斷以及應(yīng)用,學(xué)生在求兩集合補(bǔ)集時(shí)注意全集的范圍,由題意得到集合B是集合C的子集是解第二問(wèn)的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U=R,集合A={x|x2-2x<0},B={x|x>1},則集A∩?UB=
{x|0<x≤1}
{x|0<x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U=R,集合A={x|x≥0},B={x|x2-2x-3<0},則(?UA)∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•許昌二模)設(shè)全集U=R,集合A={x|x2-x-30<0},B={x|cos
πx
3
=
1
2
},則A∩B等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U=R,集合A={x|-2<x≤3},B={x|0≤x<5}
(1)分別求A∪B,A∩(?UB);
(2)設(shè)C={x|x∈A∪B且x∉A∩B},求集合C.

查看答案和解析>>

同步練習(xí)冊(cè)答案