【題目】設(shè)兩個(gè)向量 =(λ+2,λ2﹣cos2α)和 =(m, +sinα),其中λ,m,α為實(shí)數(shù).若 =2 ,則 的取值范圍是(
A.[﹣1,6]
B.[﹣6,1]
C.(﹣∞, ]
D.[4,8]

【答案】B
【解析】解:∵ =2
∴λ+2=2m,①λ2﹣cox2α=m+2sinα.②
∴λ=2m﹣2代入②得,4m2﹣9m+4=cox2α+2sinα=1﹣sin2α+2sinα
=2﹣(sinα﹣1)2
∵﹣1≤sinα≤1,∴0≤(sinα﹣1)2≤4,﹣4≤﹣(sinα﹣1)2≤0
∴﹣2≤2﹣(sinα﹣1)2≤2
∴﹣2≤4m2﹣9m+4≤2
分別解4m2﹣9m+4≥﹣2,與4m2﹣9m+4≤2得, ≤m≤2
≤4
= =2﹣
∴﹣6≤2﹣ ≤1
的取值范圍是[﹣6,1]
故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)求的最小值以及取得最小值時(shí)的值.

(2)若方程上有兩個(gè)根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+ )(A>0,ω>0)的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)和第一個(gè)最低點(diǎn)的坐標(biāo)分別為(x0 , 2)和(x0+ ,﹣2).
(1)求函數(shù)f(x)的解析式;
(2)求sin(x0+ )的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】生產(chǎn)某種產(chǎn)品q個(gè)單位時(shí)成本函數(shù)為C(q)=200+0.05q2,求:

(1)生產(chǎn)90個(gè)單位該產(chǎn)品時(shí)的平均成本;

(2)生產(chǎn)90個(gè)到100個(gè)單位該產(chǎn)品時(shí),成本的平均變化率;

(3)生產(chǎn)第100個(gè)單位該產(chǎn)品時(shí),成本的變化率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列{an}中,Sn為其前n項(xiàng)和,已知a2=2,S5=15,數(shù)列{bn},b1=1,對(duì)任意n∈N+滿足bn+1=2bn+1.
(1)數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)設(shè)cn= ,設(shè)數(shù)列{cn}的前n項(xiàng)和Tn , 證明:Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)總體中的100個(gè)個(gè)體的編號(hào)分別為0,1,2,3,…,99,依次將其分成10個(gè)小段,段號(hào)分別為0,1,2,…,9.現(xiàn)要用系統(tǒng)抽樣的方法抽取一個(gè)容量為10的樣本,規(guī)定如果在第0段隨機(jī)抽取的號(hào)碼為i,那么依次錯(cuò)位地取出后面各段的號(hào)碼,即第k段中所抽取的號(hào)碼的個(gè)位數(shù)為i+k或i+k-10(i+k≥10),則當(dāng)i=7時(shí),所抽取的第6個(gè)號(hào)碼是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時(shí)間內(nèi)每個(gè)技工加工的合格零件數(shù)的統(tǒng)計(jì)數(shù)據(jù)的莖葉圖如圖所示.已知兩組技工在單位時(shí)間內(nèi)加工的合格零件平均數(shù)都為

(1)分別求出mn的值;

(2)分別求出甲、乙兩組技工在單位時(shí)間內(nèi)加工的合格零件的方差,并由此分析兩組技工的加工水平;

(3)質(zhì)檢部門從該車間甲、乙兩組技工中各隨機(jī)抽取一名技工,對(duì)其加工的零件進(jìn)行檢測(cè),若兩人加工的合格零件個(gè)數(shù)之和大于18,則稱該車間“質(zhì)量合格”,求該車間“質(zhì)量合格”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右頂點(diǎn)為,點(diǎn)在橢圓上,為坐標(biāo)原點(diǎn),且,則橢圓的離心率的取值范圍為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= cos(2x+ )+sin2x
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)設(shè)函數(shù)g(x)對(duì)任意x∈R,有g(shù)(x+ )=g(x),且當(dāng)x∈[0, ]時(shí),g(x)= ﹣f(x),求g(x)在區(qū)間[﹣π,0]上的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案