已知數(shù)學公式,函數(shù)f(x)=loga(1-x),若正實數(shù)m、n滿足f(m)>f(n),則m、n的大小關(guān)系為________.

m>n
分析:根據(jù)對數(shù)的底數(shù)的范圍,結(jié)合函數(shù)的解析式可得函數(shù)f(x)是定義域內(nèi)的增函數(shù),再由f(m)>f(n)可得m、n的大小關(guān)系.
解答:∵已知<1,且a>0,
∴函數(shù)f(x)=loga(1-x)在定義域(-∞,1)上是增函數(shù).
再由f(m)>f(n),可得m>n,
故答案為 m>n.
點評:本題主要考查對數(shù)函數(shù)的單調(diào)性、圖象和性質(zhì)的應(yīng)用,判斷函數(shù)f(x)是定義域內(nèi)的增函數(shù),是解題的關(guān)鍵,屬于
中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知奇函數(shù)f(x)在(-∞,0)∪(0,+∞)上有意義,且在(0,+∞)上是減函數(shù),f(1)=0,又有函數(shù)g(θ)=sin2θ+mcosθ-2m,θ∈[0,
π2
],若集合M={m|g(θ)<0},集合N={m|f[g(θ)]>0}.
(1)解不等式f(x)>0;
(2)求M∩N.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知奇函數(shù)f(x)的定義域為(-1,1),當x∈(0,1)時,f(x)=
2x2x+1

(1)求f(x)在(-1,1)上的解析式;
(2)判斷f(x)在(0,1)上的單調(diào)性,并證明之.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知冪函數(shù)f(x)=xa的圖象過點(
1
2
,
2
2
)
,則f(x)在(0,+∞)單調(diào)遞

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知奇函數(shù)f(x)在區(qū)間(a,b)上是減函數(shù),證明f(x)在區(qū)間(-b,-a)上仍是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:函數(shù)f(x)=x3-6x2+3x+t,t∈R.
(1)①證明:a3-b3=(a-b)(a2+ab+b2
②求函數(shù)f(x)兩個極值點所對應(yīng)的圖象上兩點之間的距離;
(2)設(shè)函數(shù)g(x)=exf(x)有三個不同的極值點,求t的取值范圍.

查看答案和解析>>

同步練習冊答案