Processing math: 41%
13.已知復(fù)數(shù)z=1+ii,其中i為虛數(shù)單位,則|z|=( �。�
A.12B.22C.2D.2

分析 利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由復(fù)數(shù)模的計(jì)算公式求解.

解答 解:∵z=1+ii=1+iii2=1-i,
|z|=2,
故選:C.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,考查復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知命題p:不等式x2-ax-8>0對(duì)任意實(shí)數(shù)x∈[2,4]恒成立;命題q:存在實(shí)數(shù)θ滿足\frac{4}{a-1}≤sinθ-2;命題r:不等式ax2+2x-1>0有解.
(1)若p∧q為真命題,求a的取值范圍.
(2)若命題p、q、r恰有兩個(gè)是真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.古式樓閣中的橫梁多為木質(zhì)長(zhǎng)方體結(jié)構(gòu),當(dāng)橫梁的長(zhǎng)度一定時(shí),其強(qiáng)度與寬成正比,與高的平方成正比.現(xiàn)將一圓柱形木頭鋸成一橫梁(長(zhǎng)度不變),當(dāng)高與寬的比值為\sqrt{2}時(shí),橫梁的強(qiáng)度最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)y=f(x)的周期為2,當(dāng)x∈[-1,1]時(shí)f(x)=x2,那么關(guān)于x的方程f(x)-|log5x|=0共有幾個(gè)根(  )
A.4個(gè)B.5個(gè)C.6個(gè)D.8個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.如圖,∠ACB=90°,DA⊥平面ABC,AE⊥DB交DB于E,AF⊥DC交DC于F,且AD=AB=2,則三棱錐D-AEF體積的最大值為\frac{\sqrt{2}}{6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若復(fù)數(shù)(m2-3m)+(m2-5m+6)i(m∈R))是純虛數(shù),則m的值為( �。�
A.0B.2C.0或3D.2或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在△ABC中,∠A,∠B,∠C所對(duì)的邊分別是a,b,c,M為BC的中點(diǎn),BM=MC=2,AM=b-c,則△ABC面積最大值為2\sqrt{3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖所示的坐標(biāo)平面的可行域內(nèi)(包括邊界),若使目標(biāo)函數(shù)z=ax+y(a>0)取得最大值的最優(yōu)解有無(wú)窮多個(gè),則a的值為( �。�
A.\frac{1}{4}B.\frac{3}{5}C.4D.\frac{5}{3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.連接橢圓\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})的四個(gè)頂點(diǎn)構(gòu)成的四邊形的面積為4,其一個(gè)焦點(diǎn)與拋物線{y^2}=4\sqrt{3}x的焦點(diǎn)重合,則該橢圓的方程為\frac{{x}^{2}}{4}+{y}^{2}=1

查看答案和解析>>

同步練習(xí)冊(cè)答案