已知函數(shù)
(1)解不等式
(2)對于任意的,不等式恒成立,求的取值范圍.

(1);(2).

解析試題分析:本題考查絕對值不等式的解法和不等式的恒成立問題,考查學(xué)生的分類討論思想和轉(zhuǎn)化能力.第一問,利用零點分段法進行分類求解;第二問,利用函數(shù)的單調(diào)性求出最大值證明恒成立問題.
試題解析:(1)    3分
解得 ∴不等式解集為          6分
(2),即,        7分
設(shè),則      9分
上單調(diào)遞減, ;上單調(diào)遞增,
∴在,                    11分
時不等式上恒成立           12分
考點:1.絕對值不等式的解法;2.分段函數(shù)求最值;3.恒成立問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

求值化簡:
(Ⅰ);
(Ⅱ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的圖像在點處的切線方程為.
(Ⅰ)求實數(shù)的值;
(Ⅱ)求函數(shù)在區(qū)間上的最大值;
(Ⅲ)若曲線上存在兩點使得是以坐標原點為直角頂點的直角三角形,且斜邊的中點在軸上,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)若函數(shù)上是減函數(shù),求實數(shù)a的最小值;
(2)若,使成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當時,是否存在整數(shù),使不等式恒成立?若存在,求整數(shù)的值;若不存在,請說明理由;
(3)關(guān)于的方程上恰有兩個相異實根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù),當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時.研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數(shù).
(1)當0≤x≤200時,求函數(shù)v(x)的表達式;
(2)當車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)f(x)=x·v(x)可以達到最大,并求出最大值(精確到1輛/小時).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù).若的定義域為,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是二次函數(shù),不等式的解集是,且在區(qū)間上的最大值為12.
(1)求的解析式;
(2)設(shè)函數(shù)上的最小值為,求的表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求出所有的函數(shù)使得對于所有,都能被整除.

查看答案和解析>>

同步練習(xí)冊答案