正四棱錐S-ABCD內接于球O;過球心O的一個截面如圖,棱錐的底面邊長為a,則SC與底面ABCD所成角的大小為    ,球O的表面積為   
【答案】分析:由題意可知正四棱錐的底面對角線就是球的直徑,求出底面對角線長,即可求出球的半徑,確定直線與平面所成角求解即可,然后求出球的表面積.
解答:解:根據(jù)正四棱錐S-ABCD內接于球O,過球心O的一個截面如圖,
可知正四棱錐S-ABCD的底面對角線AC經(jīng)過球心,對角線長等于球的直徑,
∵棱錐的底面邊長為a,
∴底面對角線長為:a,球的半徑為:a,
SC與底面ABCD所成角的大小為:∠SCO=
∴球的表面積為:4π(2=2πa2
故答案為:;  2πa2
點評:本題考查球的內接多面體,球的表面積及相關計算,考查空間想象力,本題的突破口在正確處理截面圖形,明確球的直徑就是棱錐的底面對角線是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正四棱錐S-ABCD中,E是側棱SC的中點,異面直線SA和BC所成角的大小是60°.
(1)求證:直線SA∥平面BDE;
(2)求二面角A-SB-D的余弦值;
(3)求直線BD和平面SBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正四棱錐S-ABCD,底面上的四個頂點A、B、C、D在球心為O的半球底面圓周上,頂點S在半球面上,則半球O的體積和正四棱錐S-ABCD的體積之比為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

12、如圖在正四棱錐S-ABCD中,E是BC的中點,P點在側面△SCD內及其邊界上運動,并且總是保持PE⊥AC,則動點P的軌跡與△SCD組成的相關圖形是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正四棱錐S-ABCD中,側棱與底面所成的角為α,側面與底面所成的角為β,側面等腰三角形的底角為γ,相鄰兩側面所成的二面角為θ,則α、β、γ、θ的大小關系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正四棱錐S-ABCD中,點O是底面中心,SO=2,側棱SA=2
3
,則該棱錐的體積為
32
3
32
3

查看答案和解析>>

同步練習冊答案