設{an}和{bn}都是公差不為零的等差數(shù)列,且
lim
n→∞
an
bn
=2
,則
lim
n→∞
b1+b2+…+bn
na2n
的值為
1
8
1
8
分析:設{an}和{bn}的公差分別為d1 和d2,有條件可得d1=2d2,根據(jù)等差數(shù)列的通項公式及前n項和公式化簡要求的式子
并把d1=2d2代入,再利用數(shù)列極限的運算法則求出結果.
解答:解:設{an}和{bn}的公差分別為d1 和d2,
lim
n→∞
an
bn
=
lim
n→∞
a1+(n-1)d1
b1+(n-1)d2
=
d1
d2
=2,∴d1=2d2
lim
n→∞
b1+b2+…+bn
na2n
=
lim
n→∞
nb1+
n(n-1)
2
d2
n[a1+(2n-1)d1 ]
=
d2
2
d1
=
d2
4d1
=
1
8
,
故答案為:
1
8
點評:本題主要考查等差數(shù)列的通項公式,前n項和公式,求數(shù)列的極限的方法,得到d1=2d2,是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•閘北區(qū)一模)設{an}和{bn}均為無窮數(shù)列.
(1)若{an}和{bn}均為等比數(shù)列,試研究:{an+bn}和{anbn}是否是等比數(shù)列?請證明你的結論;若是等比數(shù)列,請寫出其前n項和公式.
(2)請類比(1),針對等差數(shù)列提出相應的真命題(不必證明),并寫出相應的等差數(shù)列的前n項和公式(用首項與公差表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(任選一題)
(1)已知α、β為實數(shù),給出下列三個論斷:
①|α-β|≤|α+β|②|α+β|>5  ③|α|>2
2
,|β|>2
2

以其中的兩個論斷為條件,另一個論斷為結論,寫出你認為正確的命題是
①③⇒②
①③⇒②

(2)設{an}和{bn}都是公差不為零的等差數(shù)列,且
lim
n→∞
an
bn
=2
,則
lim
n→∞
b1+b2+…+bn
na2n
的值為
1
8
1
8

查看答案和解析>>

科目:高中數(shù)學 來源:2012年上海市閘北區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

設{an}和{bn}均為無窮數(shù)列.
(1)若{an}和{bn}均為等比數(shù)列,試研究:{an+bn}和{anbn}是否是等比數(shù)列?請證明你的結論;若是等比數(shù)列,請寫出其前n項和公式.
(2)請類比(1),針對等差數(shù)列提出相應的真命題(不必證明),并寫出相應的等差數(shù)列的前n項和公式(用首項與公差表示).

查看答案和解析>>

科目:高中數(shù)學 來源:2004年廣東省深圳市松崗中學高考數(shù)學模擬試卷(2)(解析版) 題型:解答題

(任選一題)
(1)已知α、β為實數(shù),給出下列三個論斷:
①|α-β|≤|α+β|②|α+β|>5  ③|α|>2,|β|>2
以其中的兩個論斷為條件,另一個論斷為結論,寫出你認為正確的命題是   
(2)設{an}和{bn}都是公差不為零的等差數(shù)列,且,則的值為   

查看答案和解析>>

同步練習冊答案